1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use std::{fmt, ops};

use crate::{about_eq, about_eq_hash, Factor, FactorPercent};

/// RGB + alpha.
///
/// # Equality
///
/// Equality is determined using [`about_eq`] with `0.00001` epsilon.
///
/// [`about_eq`]: crate::about_eq
#[repr(C)]
#[derive(Default, Copy, Clone, serde::Serialize, serde::Deserialize)]
pub struct Rgba {
    /// Red channel value, in the `[0.0..=1.0]` range.
    pub red: f32,
    /// Green channel value, in the `[0.0..=1.0]` range.
    pub green: f32,
    /// Blue channel value, in the `[0.0..=1.0]` range.
    pub blue: f32,
    /// Alpha channel value, in the `[0.0..=1.0]` range.
    pub alpha: f32,
}
impl PartialEq for Rgba {
    fn eq(&self, other: &Self) -> bool {
        about_eq(self.red, other.red, EPSILON)
            && about_eq(self.green, other.green, EPSILON)
            && about_eq(self.blue, other.blue, EPSILON)
            && about_eq(self.alpha, other.alpha, EPSILON)
    }
}
impl std::hash::Hash for Rgba {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        about_eq_hash(self.red, EPSILON, state);
        about_eq_hash(self.green, EPSILON, state);
        about_eq_hash(self.blue, EPSILON, state);
        about_eq_hash(self.alpha, EPSILON, state);
    }
}
impl Rgba {
    /// New from RGB of a the same type and A that can be of a different type.
    pub fn new<C: Into<RgbaComponent>, A: Into<RgbaComponent>>(red: C, green: C, blue: C, alpha: A) -> Rgba {
        Rgba {
            red: red.into().0,
            green: green.into().0,
            blue: blue.into().0,
            alpha: alpha.into().0,
        }
    }

    /// Set the [`red`](Rgba::red) component from any type that converts to [`RgbaComponent`].
    pub fn set_red<R: Into<RgbaComponent>>(&mut self, red: R) {
        self.red = red.into().0
    }

    /// Set the [`green`](Rgba::green) component from any type that converts to [`RgbaComponent`].
    pub fn set_green<G: Into<RgbaComponent>>(&mut self, green: G) {
        self.green = green.into().0
    }

    /// Set the [`blue`](Rgba::blue) component from any type that converts to [`RgbaComponent`].
    pub fn set_blue<B: Into<RgbaComponent>>(&mut self, blue: B) {
        self.blue = blue.into().0
    }

    /// Set the [`alpha`](Rgba::alpha) component from any type that converts to [`RgbaComponent`].
    pub fn set_alpha<A: Into<RgbaComponent>>(&mut self, alpha: A) {
        self.alpha = alpha.into().0
    }

    /// Returns a copy of the color with a new `red` value.
    pub fn with_red<R: Into<RgbaComponent>>(mut self, red: R) -> Self {
        self.set_red(red);
        self
    }

    /// Returns a copy of the color with a new `green` value.
    pub fn with_green<R: Into<RgbaComponent>>(mut self, green: R) -> Self {
        self.set_green(green);
        self
    }

    /// Returns a copy of the color with a new `blue` value.
    pub fn with_blue<B: Into<RgbaComponent>>(mut self, blue: B) -> Self {
        self.set_blue(blue);
        self
    }

    /// Returns a copy of the color with a new `alpha` value.
    pub fn with_alpha<A: Into<RgbaComponent>>(mut self, alpha: A) -> Self {
        self.set_alpha(alpha);
        self
    }

    /// Returns a copy of the color with the alpha set to `0`.
    pub fn transparent(self) -> Self {
        self.with_alpha(0.0)
    }

    /// Convert a copy to [R, G, B, A] bytes.
    pub fn to_bytes(self) -> [u8; 4] {
        [
            (self.red * 255.0) as u8,
            (self.green * 255.0) as u8,
            (self.blue * 255.0) as u8,
            (self.alpha * 255.0) as u8,
        ]
    }
}
impl fmt::Debug for Rgba {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_struct("Rgba")
                .field("red", &self.red)
                .field("green", &self.green)
                .field("blue", &self.blue)
                .field("alpha", &self.alpha)
                .finish()
        } else {
            fn i(n: f32) -> u8 {
                (clamp_normal(n) * 255.0).round() as u8
            }
            let a = i(self.alpha);
            if a == 255 {
                write!(f, "rgb({}, {}, {})", i(self.red), i(self.green), i(self.blue))
            } else {
                write!(f, "rgba({}, {}, {}, {})", i(self.red), i(self.green), i(self.blue), a)
            }
        }
    }
}
impl fmt::Display for Rgba {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fn i(n: f32) -> u32 {
            (clamp_normal(n) * 255.0).round() as u32
        }

        let mut rgb: u32 = 0;
        rgb |= i(self.red) << 16;
        rgb |= i(self.green) << 8;
        rgb |= i(self.blue);

        let a = i(self.alpha);
        if a == 255 {
            write!(f, "#{rgb:0>6X}")
        } else {
            let rgba = rgb << 8 | a;
            write!(f, "#{rgba:0>8X}")
        }
    }
}
impl ops::Add<Self> for Rgba {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Rgba {
            red: self.red + rhs.red,
            green: self.green + rhs.green,
            blue: self.blue + rhs.blue,
            alpha: self.alpha + rhs.alpha,
        }
    }
}
impl ops::AddAssign<Self> for Rgba {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}
impl ops::Sub<Self> for Rgba {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Rgba {
            red: self.red - rhs.red,
            green: self.green - rhs.green,
            blue: self.blue - rhs.blue,
            alpha: self.alpha - rhs.alpha,
        }
    }
}
impl ops::SubAssign<Self> for Rgba {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

/// Minimal difference between values in around the 0.0..=1.0 scale.
const EPSILON: f32 = 0.00001;

// Util
fn clamp_normal(i: f32) -> f32 {
    i.clamp(0.0, 1.0)
}

/// Color functions argument conversion helper.
///
/// Don't use this value directly, if a function takes `Into<RgbaComponent>` you can use one of the
/// types this converts from:
///
/// * `f32`, `f64` and [`Factor`] for a value in the `0.0` to `1.0` range.
/// * `u8` for a value in the `0` to `255` range.
/// * [`FactorPercent`] for a percentage value.
///
/// [`Factor`]: crate::Factor
/// [`FactorPercent`]: crate::FactorPercent
#[derive(Clone, Copy)]
pub struct RgbaComponent(pub f32);
/// Color channel value is in the [0..=1] range.
impl From<f32> for RgbaComponent {
    fn from(f: f32) -> Self {
        RgbaComponent(f)
    }
}
/// Color channel value is in the [0..=1] range.
impl From<f64> for RgbaComponent {
    fn from(f: f64) -> Self {
        RgbaComponent(f as f32)
    }
}
/// Color channel value is in the [0..=255] range.
impl From<u8> for RgbaComponent {
    fn from(u: u8) -> Self {
        RgbaComponent(f32::from(u) / 255.)
    }
}
/// Color channel value is in the [0..=100] range.
impl From<FactorPercent> for RgbaComponent {
    fn from(p: FactorPercent) -> Self {
        RgbaComponent(p.0 / 100.)
    }
}
/// Color channel value is in the [0..=1] range.
impl From<Factor> for RgbaComponent {
    fn from(f: Factor) -> Self {
        RgbaComponent(f.0)
    }
}