1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
use super::{about_eq, Factor, EQ_EPSILON, EQ_EPSILON_100};

use std::{
    f32::consts::{PI, TAU},
    fmt, ops,
};

/// Angle in radians.
///
/// See [`AngleUnits`] for more details.
///
/// # Equality
///
/// Equality is determined using [`about_eq`] with `0.00001` epsilon.
#[derive(Copy, Clone, serde::Serialize, serde::Deserialize)]
#[serde(transparent)]
pub struct AngleRadian(pub f32);
impl ops::Add for AngleRadian {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}
impl ops::AddAssign for AngleRadian {
    fn add_assign(&mut self, rhs: Self) {
        self.0 += rhs.0;
    }
}
impl ops::Sub for AngleRadian {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}
impl ops::SubAssign for AngleRadian {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 -= rhs.0;
    }
}
impl ops::Neg for AngleRadian {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Self(-self.0)
    }
}
impl AngleRadian {
    /// Radians in `[0.0 ..= TAU]`.
    pub fn modulo(self) -> Self {
        AngleRadian(self.0.rem_euclid(TAU))
    }

    /// Linear interpolation.
    pub fn lerp(self, to: Self, factor: Factor) -> Self {
        Self(lerp(self.0, to.0, factor))
    }

    /// Spherical linear interpolation.
    ///
    /// Always uses the shortest path from `self` to `to`.
    ///
    /// The [`lerp`] linear interpolation always covers the numeric range between angles, so a transition from 358º to 1º
    /// iterates over almost a full counterclockwise turn to reach the final value, `slerp` simply goes from 358º to 361º modulo
    /// normalized.
    ///
    /// [`lerp`]: Self::lerp
    pub fn slerp(self, to: Self, factor: Factor) -> Self {
        Self(slerp(self.0, to.0, TAU, factor))
    }
}

impl PartialEq for AngleRadian {
    fn eq(&self, other: &Self) -> bool {
        about_eq(self.0, other.0, EQ_EPSILON)
    }
}

impl From<AngleGradian> for AngleRadian {
    fn from(grad: AngleGradian) -> Self {
        AngleRadian(grad.0 * PI / 200.0)
    }
}
impl From<AngleDegree> for AngleRadian {
    fn from(deg: AngleDegree) -> Self {
        AngleRadian(deg.0.to_radians())
    }
}
impl From<AngleTurn> for AngleRadian {
    fn from(turn: AngleTurn) -> Self {
        AngleRadian(turn.0 * TAU)
    }
}
impl From<AngleRadian> for euclid::Angle<f32> {
    fn from(rad: AngleRadian) -> Self {
        euclid::Angle::radians(rad.0)
    }
}

impl fmt::Debug for AngleRadian {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_tuple("AngleRadian").field(&self.0).finish()
        } else {
            write!(f, "{}.rad()", self.0)
        }
    }
}
impl fmt::Display for AngleRadian {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} rad", self.0)
    }
}

/// Angle in gradians.
///
/// See [`AngleUnits`] for more details.
///
/// # Equality
///
/// Equality is determined using [`about_eq`] with `0.001` epsilon.
#[derive(Copy, Clone, serde::Serialize, serde::Deserialize)]
#[serde(transparent)]
pub struct AngleGradian(pub f32);
impl AngleGradian {
    /// Gradians in `[0.0 ..= 400.0]`.
    pub fn modulo(self) -> Self {
        AngleGradian(self.0.rem_euclid(400.0))
    }

    /// Linear interpolation.
    pub fn lerp(self, to: Self, factor: Factor) -> Self {
        Self(lerp(self.0, to.0, factor))
    }

    /// Spherical linear interpolation.
    ///
    /// Always uses the shortest path from `self` to `to`.
    ///
    /// The [`lerp`] linear interpolation always covers the numeric range between angles, so a transition from 358º to 1º
    /// iterates over almost a full counterclockwise turn to reach the final value, `slerp` simply goes from 358º to 361º modulo
    /// normalized.
    ///
    /// [`lerp`]: Self::lerp
    pub fn slerp(self, to: Self, factor: Factor) -> Self {
        Self(slerp(self.0, to.0, 400.0, factor))
    }
}
impl ops::Add for AngleGradian {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}
impl ops::AddAssign for AngleGradian {
    fn add_assign(&mut self, rhs: Self) {
        self.0 += rhs.0;
    }
}
impl ops::Sub for AngleGradian {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}
impl ops::SubAssign for AngleGradian {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 -= rhs.0;
    }
}
impl ops::Neg for AngleGradian {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Self(-self.0)
    }
}

impl PartialEq for AngleGradian {
    fn eq(&self, other: &Self) -> bool {
        about_eq(self.0, other.0, EQ_EPSILON_100)
    }
}
impl From<AngleRadian> for AngleGradian {
    fn from(rad: AngleRadian) -> Self {
        AngleGradian(rad.0 * 200.0 / PI)
    }
}
impl From<AngleDegree> for AngleGradian {
    fn from(deg: AngleDegree) -> Self {
        AngleGradian(deg.0 * 10.0 / 9.0)
    }
}
impl From<AngleTurn> for AngleGradian {
    fn from(turn: AngleTurn) -> Self {
        AngleGradian(turn.0 * 400.0)
    }
}
impl fmt::Debug for AngleGradian {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_tuple("AngleGradian").field(&self.0).finish()
        } else {
            write!(f, "{}.grad()", self.0)
        }
    }
}
impl fmt::Display for AngleGradian {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} gon", self.0)
    }
}

/// Angle in degrees.
///
/// See [`AngleUnits`] for more details.
///
/// # Equality
///
/// Equality is determined using [`about_eq`] with `0.001` epsilon.
#[derive(Copy, Clone, serde::Serialize, serde::Deserialize)]
#[serde(transparent)]
pub struct AngleDegree(pub f32);
impl AngleDegree {
    /// Degrees in `[0.0 ..= 360.0]`.
    pub fn modulo(self) -> Self {
        AngleDegree(self.0.rem_euclid(360.0))
    }

    /// Linear interpolation.
    pub fn lerp(self, to: Self, factor: Factor) -> Self {
        Self(lerp(self.0, to.0, factor))
    }

    /// Spherical linear interpolation.
    ///
    /// Always uses the shortest path from `self` to `to`.
    ///
    /// The [`lerp`] linear interpolation always covers the numeric range between angles, so a transition from 358º to 1º
    /// iterates over almost a full counterclockwise turn to reach the final value, `slerp` simply goes from 358º to 361º modulo
    /// normalized.
    ///
    /// [`lerp`]: Self::lerp
    pub fn slerp(self, to: Self, factor: Factor) -> Self {
        Self(slerp(self.0, to.0, 360.0, factor))
    }
}
impl ops::Add for AngleDegree {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}
impl ops::AddAssign for AngleDegree {
    fn add_assign(&mut self, rhs: Self) {
        self.0 += rhs.0;
    }
}
impl ops::Sub for AngleDegree {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}
impl ops::SubAssign for AngleDegree {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 -= rhs.0;
    }
}
impl ops::Neg for AngleDegree {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Self(-self.0)
    }
}

impl PartialEq for AngleDegree {
    fn eq(&self, other: &Self) -> bool {
        about_eq(self.0, other.0, EQ_EPSILON_100)
    }
}
impl From<AngleRadian> for AngleDegree {
    fn from(rad: AngleRadian) -> Self {
        AngleDegree(rad.0.to_degrees())
    }
}
impl From<AngleGradian> for AngleDegree {
    fn from(grad: AngleGradian) -> Self {
        AngleDegree(grad.0 * 9.0 / 10.0)
    }
}
impl From<AngleTurn> for AngleDegree {
    fn from(turn: AngleTurn) -> Self {
        AngleDegree(turn.0 * 360.0)
    }
}
impl fmt::Debug for AngleDegree {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_tuple("AngleDegree").field(&self.0).finish()
        } else {
            write!(f, "{}.deg()", self.0)
        }
    }
}
impl fmt::Display for AngleDegree {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}º", self.0)
    }
}

/// Angle in turns (complete rotations).
///
/// See [`AngleUnits`] for more details.
///
/// # Equality
///
/// Equality is determined using [`about_eq`] with `0.00001` epsilon.
#[derive(Copy, Clone, serde::Serialize, serde::Deserialize)]
#[serde(transparent)]
pub struct AngleTurn(pub f32);
impl AngleTurn {
    /// Turns in `[0.0 ..= 1.0]`.
    pub fn modulo(self) -> Self {
        AngleTurn(self.0.rem_euclid(1.0))
    }

    /// Linear interpolation.
    pub fn lerp(self, to: Self, factor: Factor) -> Self {
        Self(lerp(self.0, to.0, factor))
    }

    /// Spherical linear interpolation.
    ///
    /// Always uses the shortest path from `self` to `to`.
    ///
    /// The [`lerp`] linear interpolation always covers the numeric range between angles, so a transition from 358º to 1º
    /// iterates over almost a full counterclockwise turn to reach the final value, `slerp` simply goes from 358º to 361º modulo
    /// normalized.
    ///
    /// [`lerp`]: Self::lerp
    pub fn slerp(self, to: Self, factor: Factor) -> Self {
        Self(slerp(self.0, to.0, 1.0, factor))
    }
}
impl ops::Add for AngleTurn {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0 + rhs.0)
    }
}
impl ops::AddAssign for AngleTurn {
    fn add_assign(&mut self, rhs: Self) {
        self.0 += rhs.0;
    }
}
impl ops::Sub for AngleTurn {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0 - rhs.0)
    }
}
impl ops::SubAssign for AngleTurn {
    fn sub_assign(&mut self, rhs: Self) {
        self.0 -= rhs.0;
    }
}
impl ops::Neg for AngleTurn {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Self(-self.0)
    }
}

impl fmt::Debug for AngleTurn {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_tuple("AngleTurn").field(&self.0).finish()
        } else {
            write!(f, "{}.turn()", self.0)
        }
    }
}
impl fmt::Display for AngleTurn {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if (self.0 - 1.0).abs() < 0.0001 {
            write!(f, "1 turn")
        } else {
            write!(f, "{} turns", self.0)
        }
    }
}
impl PartialEq for AngleTurn {
    fn eq(&self, other: &Self) -> bool {
        about_eq(self.0, other.0, EQ_EPSILON)
    }
}

impl From<AngleRadian> for AngleTurn {
    fn from(rad: AngleRadian) -> Self {
        AngleTurn(rad.0 / TAU)
    }
}
impl From<AngleGradian> for AngleTurn {
    fn from(grad: AngleGradian) -> Self {
        AngleTurn(grad.0 / 400.0)
    }
}
impl From<AngleDegree> for AngleTurn {
    fn from(deg: AngleDegree) -> Self {
        AngleTurn(deg.0 / 360.0)
    }
}

/// Extension methods for initializing angle units.
///
/// This trait is implemented for [`f32`] and [`u32`] allowing initialization of angle unit types using the `<number>.<unit>()` syntax.
///
/// # Examples
///
/// ```
/// # use zng_unit::*;
/// let radians = 6.28318.rad();
/// let gradians = 400.grad();
/// let degrees = 360.deg();
/// let turns = 1.turn();
/// ```
pub trait AngleUnits {
    /// Radians
    fn rad(self) -> AngleRadian;
    /// Gradians
    fn grad(self) -> AngleGradian;
    /// Degrees
    fn deg(self) -> AngleDegree;
    /// Turns
    fn turn(self) -> AngleTurn;
}
impl AngleUnits for f32 {
    fn rad(self) -> AngleRadian {
        AngleRadian(self)
    }

    fn grad(self) -> AngleGradian {
        AngleGradian(self)
    }

    fn deg(self) -> AngleDegree {
        AngleDegree(self)
    }

    fn turn(self) -> AngleTurn {
        AngleTurn(self)
    }
}
impl AngleUnits for i32 {
    fn rad(self) -> AngleRadian {
        AngleRadian(self as f32)
    }

    fn grad(self) -> AngleGradian {
        AngleGradian(self as f32)
    }

    fn deg(self) -> AngleDegree {
        AngleDegree(self as f32)
    }

    fn turn(self) -> AngleTurn {
        AngleTurn(self as f32)
    }
}

fn lerp(from: f32, to: f32, factor: Factor) -> f32 {
    from + (to - from) * factor.0
}

fn slerp(from: f32, to: f32, turn: f32, factor: Factor) -> f32 {
    let angle_to = {
        let d = (to - from) % turn;
        2.0 * d % turn - d
    };
    from + angle_to * factor.0
}