zng_layout/unit/alignment.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
use std::{
borrow::Cow,
fmt::{self, Write},
ops,
};
use crate::context::LayoutDirection;
use zng_var::{
animation::{easing::EasingStep, Transitionable},
impl_from_and_into_var,
};
use super::{Factor, Factor2d, FactorPercent, FactorUnits, Point, Px, PxConstraints, PxConstraints2d, PxSize, PxVector};
/// `x` and `y` alignment.
///
/// The values indicate how much to the right and bottom the content is moved within
/// a larger available space. An `x` value of `0.0` means the content left border touches
/// the container left border, a value of `1.0` means the content right border touches the
/// container right border.
///
/// There is a constant for each of the usual alignment values, the alignment is defined as two factors like this
/// primarily for animating transition between alignments.
///
/// Values outside of the `[0.0..=1.0]` range places the content outside of the container bounds.
///
/// ## Special Values
///
/// The [`f32::INFINITY`] value can be used in ***x*** or ***y*** to indicate that the content must *fill* the available space.
///
/// The [`f32::NEG_INFINITY`] value can be used in ***y*** to indicate that a panel widget must align its items by each *baseline*,
/// for most widgets this is the same as `BOTTOM`, but for texts this aligns to the baseline of the texts (bottom + baseline).
///
/// You can use the [`is_fill_x`], [`is_fill_y`] and [`is_baseline`] methods to probe for these special values.
///
/// ## Right-to-Left
///
/// The `x` alignment can be flagged as `x_rtl_aware`, in widgets that implement right-to-left the `x` value is flipped around `0.5.fct()`.
/// The named `const` values that contain `START` and `END` are `x_rtl_aware`, the others are not. The `x_rtl_aware` flag is sticky, all
/// arithmetic operations between aligns output an `x_rtl_aware` align if any of the inputs is flagged. The flag is only resolved explicitly,
/// arithmetic operations apply on the
///
/// [`is_fill_x`]: Align::is_fill_x
/// [`is_fill_y`]: Align::is_fill_y
/// [`is_baseline`]: Align::is_baseline
/// [`as_self_align`]: Align::as_self_align
#[derive(Clone, Copy)]
pub struct Align {
/// *x* alignment in a `[0.0..=1.0]` range.
pub x: Factor,
/// If `x` is flipped (around `0.5`) in right-to-left contexts.
pub x_rtl_aware: bool,
/// *y* alignment in a `[0.0..=1.0]` range.
pub y: Factor,
}
impl PartialEq for Align {
fn eq(&self, other: &Self) -> bool {
self.is_fill_x() == other.is_fill_x() && self.is_fill_y() == other.is_fill_y() && self.x == other.x && self.y == other.y
}
}
impl Default for Align {
/// [`Align::START`].
fn default() -> Self {
Align::START
}
}
impl Align {
/// Gets the best finite [`x`] align value.
///
/// Replaces `FILL` with `START`, flips `x` for right-to-left if applicable.
///
/// [`x`]: Self::x
pub fn x(self, direction: LayoutDirection) -> Factor {
let x = if self.x.0.is_finite() { self.x } else { 0.fct() };
if self.x_rtl_aware && direction.is_rtl() {
x.flip()
} else {
x
}
}
/// Gets the best finite [`y`] align value.
///
/// Returns `1.fct()` for [`is_baseline`], implementers must add the baseline offset to that.
///
/// [`y`]: Self::y
/// [`is_baseline`]: Self::is_baseline
pub fn y(self) -> Factor {
if self.y.0.is_finite() {
self.y
} else if self.is_baseline() {
1.fct()
} else {
0.fct()
}
}
/// Gets the best finite [`x`] and [`y`] align values.
///
/// [`x`]: fn@Self::x
/// [`y`]: fn@Self::y
pub fn xy(self, direction: LayoutDirection) -> Factor2d {
Factor2d::new(self.x(direction), self.y())
}
/// Returns `true` if [`x`] is a special value that indicates the content width must be the container width.
///
/// [`x`]: Align::x
pub fn is_fill_x(self) -> bool {
self.x.0.is_infinite() && self.x.0.is_sign_positive()
}
/// Returns `true` if [`y`] is a special value that indicates the content height must be the container height.
///
/// [`y`]: Align::y
pub fn is_fill_y(self) -> bool {
self.y.0.is_infinite() && self.y.0.is_sign_positive()
}
/// Returns `true` if [`y`] is a special value that indicates the contents must be aligned by their baseline.
///
/// If this is `true` the *y* alignment must be `BOTTOM` plus the baseline offset.
///
/// [`y`]: Align::y
pub fn is_baseline(self) -> bool {
self.y.0.is_infinite() && self.y.0.is_sign_negative()
}
/// Returns a boolean vector of the fill values.
pub fn fill_vector(self) -> super::euclid::BoolVector2D {
super::euclid::BoolVector2D {
x: self.is_fill_x(),
y: self.is_fill_y(),
}
}
/// Constraints that must be used to layout a child node with the alignment.
pub fn child_constraints(self, parent_constraints: PxConstraints2d) -> PxConstraints2d {
// FILL is the *default* property value, so it must behave the same way as if the alignment was not applied.
parent_constraints
.with_new_min(
if self.is_fill_x() { parent_constraints.x.min() } else { Px(0) },
if self.is_fill_y() { parent_constraints.y.min() } else { Px(0) },
)
.with_fill_and(self.is_fill_x(), self.is_fill_y())
}
/// Compute the offset for a given child size, parent size and layout direction.
///
/// Note that this does not flag baseline offset, you can use [`Align::layout`] to cover all corner cases.
pub fn child_offset(self, child_size: PxSize, parent_size: PxSize, direction: LayoutDirection) -> PxVector {
let mut offset = PxVector::zero();
if !self.is_fill_x() {
let x = if self.x_rtl_aware && direction.is_rtl() {
self.x.flip().0
} else {
self.x.0
};
offset.x = (parent_size.width - child_size.width) * x;
}
let baseline = self.is_baseline();
if !self.is_fill_y() {
let y = if baseline { 1.0 } else { self.y.0 };
offset.y = (parent_size.height - child_size.height) * y;
}
offset
}
/// Computes the size returned by [`layout`] for the given child size and constraints.
///
/// [`layout`]: Self::layout
pub fn measure(self, child_size: PxSize, parent_constraints: PxConstraints2d) -> PxSize {
let size = parent_constraints.fill_size().max(child_size);
parent_constraints.clamp_size(size)
}
/// Computes the width returned by layout for the given child width and ***x*** constraints.
pub fn measure_x(self, child_width: Px, parent_constraints_x: PxConstraints) -> Px {
let width = parent_constraints_x.fill().max(child_width);
parent_constraints_x.clamp(width)
}
/// Computes the height returned by layout for the given child height and ***y*** constraints.
pub fn measure_y(self, child_height: Px, parent_constraints_y: PxConstraints) -> Px {
let height = parent_constraints_y.fill().max(child_height);
parent_constraints_y.clamp(height)
}
/// Applies the alignment transform to `wl` and returns the size of the parent align node, the translate offset and if
/// baseline must be translated.
pub fn layout(self, child_size: PxSize, parent_constraints: PxConstraints2d, direction: LayoutDirection) -> (PxSize, PxVector, bool) {
let size = parent_constraints.fill_size().max(child_size);
let size = parent_constraints.clamp_size(size);
let offset = self.child_offset(child_size, size, direction);
(size, offset, self.is_baseline())
}
}
impl_from_and_into_var! {
fn from<X: Into<Factor>, Y: Into<Factor>>((x, y): (X, Y)) -> Align {
Align {
x: x.into(),
x_rtl_aware: false,
y: y.into(),
}
}
fn from<X: Into<Factor>, Y: Into<Factor>>((x, rtl, y): (X, bool, Y)) -> Align {
Align {
x: x.into(),
x_rtl_aware: rtl,
y: y.into(),
}
}
fn from(xy: Factor) -> Align {
Align {
x: xy,
x_rtl_aware: false,
y: xy,
}
}
fn from(xy: FactorPercent) -> Align {
xy.fct().into()
}
}
macro_rules! named_aligns {
( $($NAME:ident = ($x:expr, $rtl:expr, $y:expr);)+ ) => {named_aligns!{$(
[stringify!(($x, $y))] $NAME = ($x, $rtl, $y);
)+}};
( $([$doc:expr] $NAME:ident = ($x:expr, $rtl:expr, $y:expr);)+ ) => {
$(
#[doc=$doc]
pub const $NAME: Align = Align { x: Factor($x), x_rtl_aware: $rtl, y: Factor($y) };
)+
/// Returns the alignment `const` name if `self` is equal to one of then.
pub fn name(self) -> Option<&'static str> {
$(
if self == Self::$NAME {
Some(stringify!($NAME))
}
)else+
else {
None
}
}
/// Returns the named alignment.
pub fn from_name(name: &str) -> Option<Self> {
$(
if name == stringify!($NAME) {
Some(Self::$NAME)
}
)else+
else {
None
}
}
};
}
impl fmt::Debug for Align {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(name) = self.name() {
if f.alternate() {
write!(f, "Align::{name}")
} else {
f.write_str(name)
}
} else {
f.debug_struct("Align")
.field("x", &self.x)
.field("x_rtl_aware", &self.x_rtl_aware)
.field("y", &self.y)
.finish()
}
}
}
impl fmt::Display for Align {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(name) = self.name() {
f.write_str(name)
} else {
f.write_char('(')?;
if self.is_fill_x() {
f.write_str("<fill>")?;
} else {
write!(f, "{}", FactorPercent::from(self.x))?;
}
f.write_str(", ")?;
if self.is_fill_y() {
f.write_str("<fill>")?;
} else if self.is_baseline() {
f.write_str("<baseline>")?;
} else {
write!(f, "{}", FactorPercent::from(self.x))?;
}
f.write_char(')')
}
}
}
impl Align {
named_aligns! {
TOP_START = (0.0, true, 0.0);
TOP_LEFT = (0.0, false, 0.0);
BOTTOM_START = (0.0, true, 1.0);
BOTTOM_LEFT = (0.0, false, 1.0);
TOP_END = (1.0, true, 0.0);
TOP_RIGHT = (1.0, false, 0.0);
BOTTOM_END = (1.0, true, 1.0);
BOTTOM_RIGHT = (1.0, false, 1.0);
START = (0.0, true, 0.5);
LEFT = (0.0, false, 0.5);
END = (1.0, true, 0.5);
RIGHT = (1.0, false, 0.5);
TOP = (0.5, false, 0.0);
BOTTOM = (0.5, false, 1.0);
CENTER = (0.5, false, 0.5);
FILL_TOP = (f32::INFINITY, false, 0.0);
FILL_BOTTOM = (f32::INFINITY, false, 1.0);
FILL_START = (0.0, true, f32::INFINITY);
FILL_LEFT = (0.0, false, f32::INFINITY);
FILL_RIGHT = (1.0, false, f32::INFINITY);
FILL_END = (1.0, true, f32::INFINITY);
FILL_X = (f32::INFINITY, false, 0.5);
FILL_Y = (0.5, false, f32::INFINITY);
FILL = (f32::INFINITY, false, f32::INFINITY);
BASELINE_START = (0.0, true, f32::NEG_INFINITY);
BASELINE_LEFT = (0.0, false, f32::NEG_INFINITY);
BASELINE_CENTER = (0.5, false, f32::NEG_INFINITY);
BASELINE_END = (1.0, true, f32::NEG_INFINITY);
BASELINE_RIGHT = (1.0, false, f32::NEG_INFINITY);
BASELINE = (f32::INFINITY, false, f32::NEG_INFINITY);
}
}
impl_from_and_into_var! {
/// To relative length x and y.
fn from(alignment: Align) -> Point {
Point {
x: alignment.x.into(),
y: alignment.y.into(),
}
}
fn from(factor2d: Factor2d) -> Align {
Align {
x: factor2d.x,
x_rtl_aware: false,
y: factor2d.y,
}
}
}
impl Transitionable for Align {
fn lerp(mut self, to: &Self, step: EasingStep) -> Self {
let end = step >= 1.fct();
if end {
self.x_rtl_aware = to.x_rtl_aware;
}
if self.x.0.is_finite() && self.y.0.is_finite() {
self.x = self.x.lerp(&to.x, step);
} else if end {
self.x = to.x;
}
if self.y.0.is_finite() && self.y.0.is_finite() {
self.y = self.y.lerp(&to.y, step);
} else if end {
self.y = to.y;
}
self
}
}
impl<S: Into<Factor2d>> ops::Mul<S> for Align {
type Output = Self;
fn mul(mut self, rhs: S) -> Self {
self *= rhs;
self
}
}
impl<S: Into<Factor2d>> ops::MulAssign<S> for Align {
fn mul_assign(&mut self, rhs: S) {
let rhs = rhs.into();
if self.x.0.is_finite() {
self.x *= rhs.x;
} else if rhs.x == 0.fct() {
self.x = 0.fct();
}
if self.y.0.is_finite() {
self.y *= rhs.y;
} else if rhs.y == 0.fct() {
self.y = 0.fct()
}
}
}
impl<S: Into<Factor2d>> ops::Div<S> for Align {
type Output = Self;
fn div(mut self, rhs: S) -> Self {
self /= rhs;
self
}
}
impl<S: Into<Factor2d>> ops::DivAssign<S> for Align {
fn div_assign(&mut self, rhs: S) {
let rhs = rhs.into();
if self.x.0.is_finite() {
self.x /= rhs.x;
}
if self.y.0.is_finite() {
self.y /= rhs.y;
}
}
}
#[derive(serde::Serialize, serde::Deserialize)]
#[serde(untagged)]
enum AlignSerde<'s> {
Named(Cow<'s, str>),
Unnamed { x: Factor, x_rtl_aware: bool, y: Factor },
}
impl serde::Serialize for Align {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
if let Some(name) = self.name() {
return AlignSerde::Named(Cow::Borrowed(name)).serialize(serializer);
}
}
AlignSerde::Unnamed {
x: self.x,
x_rtl_aware: self.x_rtl_aware,
y: self.y,
}
.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for Align {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
use serde::de::Error;
match AlignSerde::deserialize(deserializer)? {
AlignSerde::Named(n) => match Align::from_name(&n) {
Some(a) => Ok(a),
None => Err(D::Error::custom("unknown align name")),
},
AlignSerde::Unnamed { x, x_rtl_aware, y } => Ok(Align { x, x_rtl_aware, y }),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn align_named() {
let value = serde_json::to_value(Align::TOP_START).unwrap();
assert_eq!(value, serde_json::Value::String("TOP_START".to_owned()));
let align: Align = serde_json::from_value(value).unwrap();
assert_eq!(align, Align::TOP_START);
}
}