zng_task/
io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
//! IO tasks.
//!
//! Most of the types in this module are re-exported from [`futures_lite::io`].
//!
//! [`futures_lite::io`]: https://docs.rs/futures-lite/latest/futures_lite/io/index.html

use std::{
    fmt,
    io::ErrorKind,
    pin::Pin,
    sync::Arc,
    task::{self, Poll},
    time::Duration,
};

use crate::{McWaker, Progress};

#[doc(no_inline)]
pub use futures_lite::io::{
    copy, empty, repeat, sink, split, AsyncBufRead, AsyncBufReadExt, AsyncRead, AsyncReadExt, AsyncSeek, AsyncSeekExt, AsyncWrite,
    AsyncWriteExt, BoxedReader, BoxedWriter, BufReader, BufWriter, Cursor, ReadHalf, WriteHalf,
};
use parking_lot::Mutex;
use std::io::{Error, Result};
use zng_time::{DInstant, INSTANT};
use zng_txt::formatx;
use zng_unit::{ByteLength, ByteUnits};
use zng_var::impl_from_and_into_var;

/// Measure read/write of an async task.
///
/// Metrics are updated after each read/write, if you read/write all bytes in one call
/// the metrics will only update once.
pub struct Measure<T> {
    task: T,
    metrics: Metrics,
    start_time: DInstant,
    last_write: DInstant,
    last_read: DInstant,
}
impl<T> Measure<T> {
    /// Start measuring a new read/write task.
    pub fn start(task: T, total_read: impl Into<ByteLength>, total_write: impl Into<ByteLength>) -> Self {
        Self::resume(task, (0, total_read), (0, total_write))
    }

    /// Continue measuring a read/write task.
    pub fn resume(
        task: T,
        read_progress: (impl Into<ByteLength>, impl Into<ByteLength>),
        write_progress: (impl Into<ByteLength>, impl Into<ByteLength>),
    ) -> Self {
        let now = INSTANT.now();
        Measure {
            task,
            metrics: Metrics {
                read_progress: (read_progress.0.into(), read_progress.1.into()),
                read_speed: 0.bytes(),
                write_progress: (write_progress.0.into(), write_progress.1.into()),
                write_speed: 0.bytes(),
                total_time: Duration::ZERO,
            },
            start_time: now,
            last_write: now,
            last_read: now,
        }
    }

    /// Current metrics.
    ///
    /// This value is updated after every read/write.
    pub fn metrics(&mut self) -> &Metrics {
        &self.metrics
    }

    /// Unwrap the inner task and final metrics.
    pub fn finish(mut self) -> (T, Metrics) {
        self.metrics.total_time = self.start_time.elapsed();
        (self.task, self.metrics)
    }
}

fn bytes_per_sec(bytes: ByteLength, elapsed: Duration) -> ByteLength {
    let bytes_per_sec = bytes.0 as u128 / elapsed.as_nanos() / Duration::from_secs(1).as_nanos();
    ByteLength(bytes_per_sec as usize)
}

impl<T: AsyncRead + Unpin> AsyncRead for Measure<T> {
    fn poll_read(self: Pin<&mut Self>, cx: &mut task::Context<'_>, buf: &mut [u8]) -> Poll<Result<usize>> {
        let self_ = self.get_mut();
        match Pin::new(&mut self_.task).poll_read(cx, buf) {
            Poll::Ready(Ok(bytes)) => {
                if bytes > 0 {
                    let bytes = bytes.bytes();
                    self_.metrics.read_progress.0 += bytes;

                    let now = INSTANT.now();
                    let elapsed = now - self_.last_read;

                    self_.last_read = now;
                    self_.metrics.read_speed = bytes_per_sec(bytes, elapsed);

                    self_.metrics.total_time = now - self_.start_time;
                }
                Poll::Ready(Ok(bytes))
            }
            p => p,
        }
    }
}
impl<T: AsyncWrite + Unpin> AsyncWrite for Measure<T> {
    fn poll_write(self: Pin<&mut Self>, cx: &mut task::Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
        let self_ = self.get_mut();
        match Pin::new(&mut self_.task).poll_write(cx, buf) {
            Poll::Ready(Ok(bytes)) => {
                if bytes > 0 {
                    let bytes = bytes.bytes();
                    self_.metrics.write_progress.0 += bytes;

                    let now = INSTANT.now();
                    let elapsed = now - self_.last_write;

                    self_.last_write = now;
                    self_.metrics.write_speed = bytes_per_sec(bytes, elapsed);

                    self_.metrics.total_time = now - self_.start_time;
                }
                Poll::Ready(Ok(bytes))
            }
            p => p,
        }
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Result<()>> {
        Pin::new(&mut self.get_mut().task).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Result<()>> {
        Pin::new(&mut self.get_mut().task).poll_close(cx)
    }
}

/// Information about the state of an async IO task.
///
/// Use [`Measure`] to measure a task.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Metrics {
    /// Number of bytes read / estimated total.
    pub read_progress: (ByteLength, ByteLength),

    /// Average read speed in bytes/second.
    pub read_speed: ByteLength,

    /// Number of bytes written / estimated total.
    pub write_progress: (ByteLength, ByteLength),

    /// Average write speed in bytes/second.
    pub write_speed: ByteLength,

    /// Total time for the entire task. This will continuously increase until
    /// the task is finished.
    pub total_time: Duration,
}
impl Metrics {
    /// All zeros.
    pub fn zero() -> Self {
        Self {
            read_progress: (0.bytes(), 0.bytes()),
            read_speed: 0.bytes(),
            write_progress: (0.bytes(), 0.bytes()),
            write_speed: 0.bytes(),
            total_time: Duration::ZERO,
        }
    }
}
impl fmt::Display for Metrics {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut w = false;
        if self.read_progress.1 > 0.bytes() {
            w = true;
            if self.read_progress.0 != self.read_progress.1 {
                write!(f, "↓ {}-{}, {}/s", self.read_progress.0, self.read_progress.1, self.read_speed)?;
                w = true;
            } else {
                write!(f, "↓ {} . {:?}", self.read_progress.0, self.total_time)?;
            }
        }
        if self.write_progress.1 > 0.bytes() {
            if w {
                writeln!(f)?;
            }
            if self.write_progress.0 != self.write_progress.1 {
                write!(f, "↑ {} - {}, {}/s", self.write_progress.0, self.write_progress.1, self.write_speed)?;
            } else {
                write!(f, "↑ {} . {:?}", self.write_progress.0, self.total_time)?;
            }
        }

        Ok(())
    }
}
impl_from_and_into_var! {
    fn from(metrics: Metrics) -> Progress {
        let mut status = Progress::indeterminate();
        if metrics.read_progress.1 > 0.bytes() {
            status = Progress::from_n_of(metrics.read_progress.0 .0, metrics.read_progress.1 .0);
        }
        if metrics.write_progress.1 > 0.bytes() {
            let w_status = Progress::from_n_of(metrics.write_progress.0 .0, metrics.write_progress.1 .0);
            if status.is_indeterminate() {
                status = w_status;
            } else {
                status = status.and_fct(w_status.fct());
            }
        }
        status.with_msg(formatx!("{metrics}")).with_meta_mut(|mut m| {
            m.set(*METRICS_ID, metrics);
        })
    }
}

zng_state_map::static_id! {
    /// Metrics in a [`Progress::with_meta`] metadata.
    pub static ref METRICS_ID: zng_state_map::StateId<Metrics>;
}

/// Extension methods for [`std::io::Error`] to be used with errors returned by [`McBufReader`].
pub trait McBufErrorExt {
    /// Returns `true` if this error represents the condition where there are only [`McBufReader::is_lazy`] readers
    /// left, the buffer is drained and the inner reader is not EOF.
    ///
    /// You can recover from this error by turning the reader non-lazy using [`McBufReader::set_lazy`].
    fn is_only_lazy_left(&self) -> bool;
}
impl McBufErrorExt for std::io::Error {
    fn is_only_lazy_left(&self) -> bool {
        matches!(self.kind(), ErrorKind::Other) && format!("{self:?}").contains(ONLY_NON_LAZY_ERROR_MSG)
    }
}
const ONLY_NON_LAZY_ERROR_MSG: &str = "no non-lazy readers left to read";

/// Multiple consumer buffered read.
///
/// Clone an instance to create a new consumer, already read bytes stay in the buffer until all clones have read it,
/// clones continue reading from the same offset as the reader they cloned.
///
/// A single instance of this reader behaves like a `BufReader`.
///
/// # Result
///
/// The result is *repeats* ready when `EOF` or an [`Error`] occurs, unfortunately the IO error is not cloneable
/// so the error is recreated using [`CloneableError`] for subsequent poll attempts.
///
/// The inner reader is dropped as soon as it finishes.
///
/// # Lazy Clones
///
/// You can mark clones as [lazy], lazy clones don't pull from the inner reader, only advance when another clone reads, if
/// all living clones are lazy they stop reading with an error. You can identify this custom error using the [`McBufErrorExt::is_only_lazy_left`]
/// extension method.
///
/// [lazy]: Self::set_lazy
pub struct McBufReader<S: AsyncRead> {
    inner: Arc<Mutex<McBufInner<S>>>,
    index: usize,
    lazy: bool,
}
struct McBufInner<S: AsyncRead> {
    source: Option<S>,
    waker: McWaker,
    lazy_wakers: Vec<task::Waker>,

    buf: Vec<u8>,

    clones: Vec<usize>,
    non_lazy_count: usize,

    result: ReadState,
}
impl<S: AsyncRead> McBufReader<S> {
    /// Creates a buffered reader.
    pub fn new(source: S) -> Self {
        let mut clones = Vec::with_capacity(2);
        clones.push(0);
        McBufReader {
            inner: Arc::new(Mutex::new(McBufInner {
                source: Some(source),
                waker: McWaker::empty(),
                lazy_wakers: vec![],

                buf: Vec::with_capacity(10.kilobytes().0),

                clones,
                non_lazy_count: 1,

                result: ReadState::Running,
            })),
            index: 0,
            lazy: false,
        }
    }

    /// Returns `true` if this reader does not pull from the inner reader, only advancing when a non-lazy reader advances.
    ///
    /// The initial reader is not lazy, only clones of lazy readers are lazy by default.
    pub fn is_lazy(&self) -> bool {
        self.lazy
    }

    /// Sets [`is_lazy`].
    ///
    /// [`is_lazy`]: Self::is_lazy
    pub fn set_lazy(&mut self, lazy: bool) {
        if self.lazy != lazy {
            if lazy {
                self.inner.lock().non_lazy_count -= 1;
            } else {
                self.inner.lock().non_lazy_count += 1;
            }
            self.lazy = lazy;
        }
    }
}
impl<S: AsyncRead> Clone for McBufReader<S> {
    fn clone(&self) -> Self {
        let mut inner = self.inner.lock();

        let offset = inner.clones[self.index];
        let index = inner.clones.len();
        inner.clones.push(offset);

        if !self.lazy {
            inner.non_lazy_count += 1;
        }

        Self {
            inner: self.inner.clone(),
            index,
            lazy: self.lazy,
        }
    }
}
impl<S: AsyncRead> Drop for McBufReader<S> {
    fn drop(&mut self) {
        let mut inner = self.inner.lock();
        inner.clones[self.index] = usize::MAX;
        if !self.lazy {
            inner.non_lazy_count -= 1;
            if inner.non_lazy_count == 0 {
                // notify lazy so they get the error.
                for waker in inner.lazy_wakers.drain(..) {
                    waker.wake();
                }
            }
        }
    }
}
impl<S: AsyncRead> AsyncRead for McBufReader<S> {
    fn poll_read(self: Pin<&mut Self>, cx: &mut task::Context<'_>, buf: &mut [u8]) -> Poll<Result<usize>> {
        let self_ = self.as_ref();
        let mut inner = self_.inner.lock();
        let inner = &mut *inner;

        // ready data for this clone.
        let mut i = inner.clones[self_.index];
        let mut ready;

        match &inner.result {
            ReadState::Running => {
                // source has not finished yet.

                ready = &inner.buf[i..];

                if ready.is_empty() {
                    if self.lazy {
                        if inner.non_lazy_count == 0 {
                            // user can make this reader non-lazy and try again.
                            return Poll::Ready(Err(Error::new(ErrorKind::Other, ONLY_NON_LAZY_ERROR_MSG)));
                        } else {
                            // register waker for after non-lazy poll.
                            inner.lazy_wakers.push(cx.waker().clone());

                            // wait non-lazy to pull.
                            return Poll::Pending;
                        }
                    }

                    // time to poll source.

                    ready = &[];

                    let waker = match inner.waker.push(cx.waker().clone()) {
                        Some(w) => w,
                        None => {
                            // already polling from another clone.
                            return Poll::Pending;
                        }
                    };

                    let min_i = inner.clones.iter().copied().min().unwrap();
                    if min_i > 0 {
                        // reuse front.
                        inner.buf.copy_within(min_i.., 0);
                        inner.buf.truncate(inner.buf.len() - min_i);

                        i -= min_i;
                        for i in &mut inner.clones {
                            *i -= min_i;
                        }
                    }

                    let new_start = inner.buf.len();

                    inner.buf.resize(inner.buf.len() + buf.len().max(10.kilobytes().0), 0);

                    let mut inner_cx = task::Context::from_waker(&waker);

                    // SAFETY: we don't move `source`.
                    let source = unsafe { Pin::new_unchecked(inner.source.as_mut().unwrap()) };
                    let result = source.poll_read(&mut inner_cx, &mut inner.buf[new_start..]);

                    match result {
                        Poll::Ready(result) => {
                            // notify lazy readers.
                            for waker in inner.lazy_wakers.drain(..) {
                                waker.wake();
                            }

                            match result {
                                Ok(0) => {
                                    inner.waker.cancel();

                                    // EOF
                                    inner.buf.truncate(new_start);
                                    inner.result = ReadState::Eof;
                                    inner.source = None;

                                    // continue 'copy ready
                                }
                                Ok(read) => {
                                    inner.waker.cancel();

                                    // Read > 0
                                    inner.buf.truncate(new_start + read);
                                    ready = &inner.buf[i..];

                                    // continue 'copy ready
                                }
                                Err(e) => {
                                    inner.waker.cancel();

                                    // Error
                                    inner.result = ReadState::Err(CloneableError::new(&e));
                                    inner.buf = vec![];
                                    inner.source = None;

                                    return Poll::Ready(Err(e));
                                }
                            }
                        }

                        Poll::Pending => {
                            inner.buf.truncate(new_start);
                            return Poll::Pending;
                        }
                    }
                }
            }
            ReadState::Eof => {
                ready = &inner.buf[i..];

                // continue 'copy ready
            }
            ReadState::Err(e) => return Poll::Ready(e.err()),
        }

        // 'copy ready

        let max_ready = buf.len().min(ready.len());
        buf[..max_ready].copy_from_slice(&ready[..max_ready]);

        i += max_ready;
        inner.clones[self_.index] = i;

        Poll::Ready(Ok(max_ready))
    }
}

/// Represents the cloneable parts of an [`Error`].
///
/// Unfortunately [`Error`] does not implement clone, this is needed to implemented
/// IO futures that repeat the ready result after subsequent polls. This type partially
/// works around the issue by copying enough information to recreate an error that is still useful.
///
/// The OS error code, [`ErrorKind`] and display message are preserved. Note that this not an error type,
/// it must be converted to [`Error`] using `into` or [`err`].
///
/// [`err`]: Self::err
#[derive(Clone)]
pub struct CloneableError {
    info: ErrorInfo,
}
#[derive(Clone)]
enum ErrorInfo {
    OsError(i32),
    Other(ErrorKind, String),
}
impl CloneableError {
    /// Copy the cloneable information from the [`Error`].
    pub fn new(e: &Error) -> Self {
        let info = if let Some(code) = e.raw_os_error() {
            ErrorInfo::OsError(code)
        } else {
            ErrorInfo::Other(e.kind(), format!("{e}"))
        };

        Self { info }
    }

    /// Returns an `Err(Error)` generated from the cloneable information.
    pub fn err<T>(&self) -> Result<T> {
        Err(self.clone().into())
    }
}
impl From<CloneableError> for Error {
    fn from(e: CloneableError) -> Self {
        match e.info {
            ErrorInfo::OsError(code) => Error::from_raw_os_error(code),
            ErrorInfo::Other(kind, msg) => Error::new(kind, msg),
        }
    }
}

/// Represents a future that generates an error if an `AsyncRead` exceeds a limit.
pub struct ReadLimited<S, L> {
    source: S,
    limit: usize,
    on_limit: L,
}
impl<S, L> ReadLimited<S, L>
where
    S: AsyncRead,
    L: Fn() -> std::io::Error,
{
    /// Construct a limited reader.
    ///
    /// The `on_limit` closure is called if the limit is reached.
    pub fn new(source: S, limit: ByteLength, on_limit: L) -> Self {
        Self {
            source,
            limit: limit.0,
            on_limit,
        }
    }
}
impl<S, L> AsyncRead for ReadLimited<S, L>
where
    S: AsyncRead,
    L: Fn() -> std::io::Error,
{
    fn poll_read(self: Pin<&mut Self>, cx: &mut task::Context<'_>, mut buf: &mut [u8]) -> Poll<Result<usize>> {
        // SAFETY: we don't move anything.
        let self_ = unsafe { self.get_unchecked_mut() };

        if self_.limit == 0 {
            let err = (self_.on_limit)();
            return Poll::Ready(Err(err));
        }

        if buf.len() > self_.limit {
            buf = &mut buf[..self_.limit];
        }

        // SAFETY: we never move `source`.
        match unsafe { Pin::new_unchecked(&mut self_.source) }.poll_read(cx, buf) {
            Poll::Ready(Ok(l)) => {
                self_.limit = self_.limit.saturating_sub(l);
                if self_.limit == 0 {
                    let err = (self_.on_limit)();
                    Poll::Ready(Err(err))
                } else {
                    Poll::Ready(Ok(l))
                }
            }
            r => r,
        }
    }
}

enum ReadState {
    Running,
    Eof,
    Err(CloneableError),
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate as task;
    use zng_unit::TimeUnits;

    #[test]
    pub fn mc_buf_reader_parallel() {
        let data = Data::new(60.kilobytes().0);

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut a = McBufReader::new(data);
        let mut b = a.clone();
        let mut c = a.clone();

        let (a, b, c) = async_test(async move {
            let a = task::run(async move {
                let mut buf = vec![];
                a.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let b = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                b.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let c = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                c.read_to_end(&mut buf).await.unwrap();
                buf
            });

            task::all!(a, b, c).await
        });

        crate::assert_vec_eq!(expected, a);
        crate::assert_vec_eq!(expected, b);
        crate::assert_vec_eq!(expected, c);
    }

    #[test]
    pub fn mc_buf_reader_single() {
        let data = Data::new(60.kilobytes().0);

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut a = McBufReader::new(data);

        let a = async_test(async move {
            let a = task::run(async move {
                let mut buf = vec![];
                a.read_to_end(&mut buf).await.unwrap();
                buf
            });

            a.await
        });

        crate::assert_vec_eq!(expected, a);
    }

    #[test]
    pub fn mc_buf_reader_sequential() {
        let data = Data::new(60.kilobytes().0);

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut clones = vec![McBufReader::new(data)];
        for _ in 0..5 {
            clones.push(clones[0].clone());
        }

        let r = async_test(async move {
            let mut r = vec![];

            for mut clone in clones {
                let mut buf = vec![];
                clone.read_to_end(&mut buf).await.unwrap();
                r.push(buf);
            }

            r
        });

        for r in r {
            crate::assert_vec_eq!(expected, r);
        }
    }

    #[test]
    pub fn mc_buf_reader_completed() {
        let data = Data::new(60.kilobytes().0);
        let mut buf = Vec::with_capacity(data.len);
        let mut a = McBufReader::new(data);

        let r = async_test(async move {
            a.read_to_end(&mut buf).await.unwrap();

            let mut b = a.clone();
            buf.clear();

            b.read_to_end(&mut buf).await.unwrap();
            buf.len()
        });

        assert_eq!(0, r);
    }

    #[test]
    pub fn mc_buf_reader_error() {
        let mut data = Data::new(20.kilobytes().0);
        data.set_error();

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut a = McBufReader::new(data);
        let mut b = a.clone();

        let (a, b) = async_test(async move {
            let a = task::run(async move {
                let mut buf = vec![];
                a.read_to_end(&mut buf).await.unwrap_err()
            });
            let b = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                b.read_to_end(&mut buf).await.unwrap_err()
            });

            task::all!(a, b).await
        });

        assert_eq!(ErrorKind::InvalidData, a.kind());
        assert_eq!(ErrorKind::InvalidData, b.kind());
    }

    #[test]
    pub fn mc_buf_reader_error_completed() {
        let mut data = Data::new(20.kilobytes().0);
        data.set_error();

        let mut buf = Vec::with_capacity(data.len);
        let mut a = McBufReader::new(data);

        let (a, b) = async_test(async move {
            let a_err = a.read_to_end(&mut buf).await.unwrap_err();

            let mut b = a.clone();
            buf.clear();

            let b_err = b.read_to_end(&mut buf).await.unwrap_err();

            (a_err, b_err)
        });

        assert_eq!(ErrorKind::InvalidData, a.kind());
        assert_eq!(ErrorKind::InvalidData, b.kind());
    }

    #[test]
    pub fn mc_buf_reader_parallel_with_delay1() {
        let mut data = Data::new(60.kilobytes().0);
        data.enable_pending();

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut a = McBufReader::new(data);
        let mut b = a.clone();
        let mut c = a.clone();

        let (a, b, c) = async_test(async move {
            let a = task::run(async move {
                let mut buf = vec![];
                a.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let b = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                b.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let c = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                c.read_to_end(&mut buf).await.unwrap();
                buf
            });

            task::all!(a, b, c).await
        });

        crate::assert_vec_eq!(expected, a);
        crate::assert_vec_eq!(expected, b);
        crate::assert_vec_eq!(expected, c);
    }

    #[test]
    pub fn mc_buf_reader_parallel_with_delay2() {
        let mut data = Data::new(60.kilobytes().0);
        data.enable_pending();

        let mut expected = vec![0; data.len];
        let _ = data.clone().blocking_read(&mut expected[..]);

        let mut a = McBufReader::new(data);
        let mut b = a.clone();
        let mut c = a.clone();

        let (a, b, c) = async_test(async move {
            let a = task::run(async move {
                let mut buf = vec![];
                a.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let b = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                task::deadline(5.ms()).await;
                b.read_to_end(&mut buf).await.unwrap();
                buf
            });
            let c = task::run(async move {
                let mut buf: Vec<u8> = vec![];
                c.read_to_end(&mut buf).await.unwrap();
                buf
            });

            task::all!(a, b, c).await
        });

        crate::assert_vec_eq!(expected, a);
        crate::assert_vec_eq!(expected, b);
        crate::assert_vec_eq!(expected, c);
    }

    #[derive(Clone)]
    struct Data {
        b: u8,
        len: usize,
        error: Option<CloneableError>,
        delay: Duration,
        pending: bool,
    }
    impl Data {
        pub fn new(len: usize) -> Self {
            Self {
                b: 0,
                len,
                error: None,
                delay: 0.ms(),
                pending: false,
            }
        }
        pub fn blocking_read(&mut self, buf: &mut [u8]) -> Result<usize> {
            let len = self.len;
            for b in buf.iter_mut().take(len) {
                *b = self.b;
                self.len -= 1;
                self.b = self.b.wrapping_add(1);
            }

            if len == 0 {
                if let Some(e) = &self.error {
                    return e.err();
                }
            }

            Ok(buf.len().min(len))
        }
        pub fn set_error(&mut self) {
            self.error = Some(CloneableError::new(&Error::new(ErrorKind::InvalidData, "test error")));
        }

        pub fn enable_pending(&mut self) {
            self.delay = 3.ms();
        }
    }
    impl AsyncRead for Data {
        fn poll_read(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>, buf: &mut [u8]) -> Poll<Result<usize>> {
            if self.delay > Duration::ZERO {
                self.pending = !self.pending;
                if self.pending {
                    let waker = cx.waker().clone();
                    let delay = self.delay;
                    task::spawn(async move {
                        task::deadline(delay).await;
                        waker.wake();
                    });
                    return Poll::Pending;
                }
            }

            let r = self.as_mut().blocking_read(buf);
            Poll::Ready(r)
        }
    }

    #[track_caller]
    fn async_test<F>(test: F) -> F::Output
    where
        F: std::future::Future,
    {
        task::block_on(task::with_deadline(test, 5.secs())).unwrap()
    }

    /// Assert vector equality with better error message.
    #[macro_export]
    macro_rules! assert_vec_eq {
        ($a:expr, $b: expr) => {
            match (&$a, &$b) {
                (ref a, ref b) => {
                    let len_not_eq = a.len() != b.len();
                    let mut data_not_eq = None;
                    for (i, (a, b)) in a.iter().zip(b.iter()).enumerate() {
                        if a != b {
                            data_not_eq = Some(i);
                            break;
                        }
                    }

                    if len_not_eq || data_not_eq.is_some() {
                        use std::fmt::*;

                        let mut error = format!("`{}` != `{}`", stringify!($a), stringify!($b));
                        if len_not_eq {
                            let _ = write!(&mut error, "\n  lengths not equal: {} != {}", a.len(), b.len());
                        }
                        if let Some(i) = data_not_eq {
                            let _ = write!(&mut error, "\n  data not equal at index {}: {} != {:?}", i, a[i], b[i]);
                        }
                        panic!("{error}")
                    }
                }
            }
        };
    }
}