zng_layout/unit/
constraints.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
use std::fmt;

use zng_var::{animation::Transitionable, impl_from_and_into_var};

use super::{euclid, FactorUnits, Px, PxSize};

pub use euclid::BoolVector2D;

/// Pixel length constraints.
///
/// These constraints can express lower and upper bounds, unbounded upper and preference of *fill* length.
///
/// See also the [`PxConstraints2d`].
#[derive(Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize, Transitionable)]
pub struct PxConstraints {
    #[serde(with = "serde_constraints_max")]
    max: Px,
    min: Px,

    /// Fill preference, when this is `true` and the constraints have a maximum bound the fill length is the maximum bounds,
    /// otherwise the fill length is the minimum bounds.
    pub fill: bool,
}
impl PxConstraints {
    /// New unbounded constrain.
    pub fn new_unbounded() -> Self {
        PxConstraints {
            max: Px::MAX,
            min: Px(0),
            fill: false,
        }
    }

    /// New bounded between zero and `max` with no fill.
    pub fn new_bounded(max: Px) -> Self {
        PxConstraints {
            max,
            min: Px(0),
            fill: false,
        }
    }

    /// New bounded to only allow the `length` and fill.
    pub fn new_exact(length: Px) -> Self {
        PxConstraints {
            max: length,
            min: length,
            fill: true,
        }
    }

    /// New bounded to fill the `length`.
    pub fn new_fill(length: Px) -> Self {
        PxConstraints {
            max: length,
            min: Px(0),
            fill: true,
        }
    }

    /// New bounded to a inclusive range.
    ///
    /// # Panics
    ///
    /// Panics if `min` is not <= `max`.
    pub fn new_range(min: Px, max: Px) -> Self {
        assert!(min <= max);

        PxConstraints { max, min, fill: false }
    }

    /// Returns a copy of the current constraints that has `min` as the lower bound and max adjusted to be >= `min`.
    pub fn with_new_min(mut self, min: Px) -> Self {
        self.min = min;
        self.max = self.max.max(self.min);
        self
    }

    /// Returns a copy [`with_new_min`] if `min` is greater then the current minimum.
    ///
    /// [`with_new_min`]: Self::with_new_min
    pub fn with_min(self, min: Px) -> Self {
        if min > self.min {
            self.with_new_min(min)
        } else {
            self
        }
    }

    /// Returns a copy of the current constraints that has `max` as the upper bound and min adjusted to be <= `max`.
    pub fn with_new_max(mut self, max: Px) -> Self {
        self.max = max;
        self.min = self.min.min(self.max);
        self
    }

    /// Returns a copy [`with_new_max`] if `max` is less then the current maximum or the current maximum is unbounded.
    ///
    /// [`with_new_max`]: Self::with_new_max
    pub fn with_max(self, max: Px) -> Self {
        if max < self.max {
            self.with_new_max(max)
        } else {
            self
        }
    }

    /// Returns a copy of the current constraints that has max and min set to `len` and fill enabled.
    pub fn with_new_exact(mut self, len: Px) -> Self {
        self.max = len;
        self.min = len;
        self.fill = true;
        self
    }

    /// Returns a copy [`with_new_exact`] if the new length clamped by the current constraints.
    ///
    /// [`with_new_exact`]: Self::with_new_exact
    pub fn with_exact(self, len: Px) -> Self {
        self.with_new_exact(self.clamp(len))
    }

    /// Returns a copy of the current constraints that sets the `fill` preference.
    pub fn with_fill(mut self, fill: bool) -> Self {
        self.fill = fill;
        self
    }

    /// Returns a copy of the current constraints that sets the fill preference to `self.fill && fill`.
    pub fn with_fill_and(mut self, fill: bool) -> Self {
        self.fill &= fill;
        self
    }

    /// Returns a copy of the current constraints without upper bound.
    pub fn with_unbounded(mut self) -> Self {
        self.max = Px::MAX;
        self
    }

    /// Returns a copy of the current constraints with `sub` subtracted from the min and max bounds.
    ///
    /// The subtraction is saturating, does not subtract max if unbounded.
    pub fn with_less(mut self, sub: Px) -> Self {
        if self.max < Px::MAX {
            self.max -= sub;
            self.max = self.max.max(Px(0));
        }
        self.min -= sub;
        self.min = self.min.max(Px(0));
        self
    }

    /// Returns a copy of the current constraints with `add` added to the maximum bounds.
    ///
    /// Does a saturation addition, this can potentially unbound the constraints if [`Px::MAX`] is reached.
    pub fn with_more(mut self, add: Px) -> Self {
        self.max += add;
        self
    }

    /// Gets if the constraints have an upper bound.
    pub fn is_bounded(self) -> bool {
        self.max != Px::MAX
    }

    /// Gets if the constraints have no upper bound.
    pub fn is_unbounded(self) -> bool {
        self.max == Px::MAX
    }

    /// Gets if the constraints only allow one length.
    pub fn is_exact(self) -> bool {
        self.max == self.min
    }

    /// Gets if the context prefers the maximum length over the minimum.
    ///
    /// Note that if the constraints are unbounded there is not maximum length, in this case the fill length is the minimum.
    pub fn is_fill_pref(self) -> bool {
        self.fill
    }

    /// Gets if the context prefers the maximum length and there is a maximum length.
    pub fn is_fill_max(self) -> bool {
        self.fill && !self.is_unbounded()
    }

    /// Gets the fixed length if the constraints only allow one length.
    pub fn exact(self) -> Option<Px> {
        if self.is_exact() {
            Some(self.max)
        } else {
            None
        }
    }

    /// Gets the maximum allowed length, or `None` if is unbounded.
    ///
    /// The maximum is inclusive.
    pub fn max(self) -> Option<Px> {
        if self.max < Px::MAX {
            Some(self.max)
        } else {
            None
        }
    }

    /// Gets the minimum allowed length.
    //
    /// The minimum is inclusive.
    pub fn min(self) -> Px {
        self.min
    }

    /// Gets the maximum length if it is bounded, or the minimum if not.
    pub fn max_bounded(self) -> Px {
        if self.max < Px::MAX {
            self.max
        } else {
            self.min
        }
    }

    /// Clamp the `px` by min and max.
    pub fn clamp(self, px: Px) -> Px {
        self.min.max(px).min(self.max)
    }

    /// Gets the fill length, if fill is `true` this is the maximum length, otherwise it is the minimum length.
    pub fn fill(self) -> Px {
        if self.fill && !self.is_unbounded() {
            self.max
        } else {
            self.min
        }
    }

    /// Gets the maximum if fill is preferred and max is bounded, or `length` clamped by the constraints.
    pub fn fill_or(self, length: Px) -> Px {
        if self.fill && !self.is_unbounded() {
            self.max
        } else {
            self.clamp(length)
        }
    }

    /// Gets the max size if is fill and has max bounds, or gets the exact size if min equals max.
    pub fn fill_or_exact(self) -> Option<Px> {
        if self.is_fill_max() || self.is_exact() {
            Some(self.max)
        } else {
            None
        }
    }

    /// Gets the maximum length if bounded or `length` clamped by the constraints.
    pub fn max_or(self, length: Px) -> Px {
        if self.is_unbounded() {
            self.clamp(length)
        } else {
            self.max
        }
    }
}
impl_from_and_into_var! {
    /// New exact.
    fn from(length: Px) -> PxConstraints {
        PxConstraints::new_exact(length)
    }
}
impl fmt::Debug for PxConstraints {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_struct("PxConstraints")
                .field("max", &self.max())
                .field("min", &self.min)
                .field("fill", &self.fill)
                .finish()
        } else if self.is_exact() {
            write!(f, "exact({})", self.min)
        } else if self.is_unbounded() {
            write!(f, "min({})", self.min)
        } else if self.fill {
            write!(f, "fill({}, {})", self.min, self.max)
        } else {
            write!(f, "range({}, {})", self.min, self.max)
        }
    }
}
impl Default for PxConstraints {
    fn default() -> Self {
        Self::new_unbounded()
    }
}
mod serde_constraints_max {
    use super::Px;
    use serde::*;
    pub fn serialize<S: Serializer>(max: &Px, serializer: S) -> Result<S::Ok, S::Error> {
        if serializer.is_human_readable() {
            let px = if *max == Px::MAX { None } else { Some(*max) };
            px.serialize(serializer)
        } else {
            max.serialize(serializer)
        }
    }

    pub fn deserialize<'de, D: serde::Deserializer<'de>>(deserializer: D) -> Result<Px, D::Error> {
        if deserializer.is_human_readable() {
            Ok(Option::<Px>::deserialize(deserializer)?.unwrap_or(Px::MAX))
        } else {
            Px::deserialize(deserializer)
        }
    }
}

/// Pixel *size* constraints.
///
/// These constraints can express lower and upper bounds, unbounded upper and preference of *fill* length for
/// both the ***x*** and ***y*** axis.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize, Transitionable)]
pub struct PxConstraints2d {
    /// Constraints of lengths in the *x* or *width* dimension.
    pub x: PxConstraints,
    /// Constraints of lengths in the *y* or *height* dimension.
    pub y: PxConstraints,
}
impl PxConstraints2d {
    /// New unbounded constrain.
    pub fn new_unbounded() -> Self {
        Self {
            x: PxConstraints::new_unbounded(),
            y: PxConstraints::new_unbounded(),
        }
    }

    /// New bounded between zero and `max_y`, `max_y` with no fill.
    pub fn new_bounded(max_x: Px, max_y: Px) -> Self {
        Self {
            x: PxConstraints::new_bounded(max_x),
            y: PxConstraints::new_bounded(max_y),
        }
    }

    /// New bounded between zero and `max` with no fill.
    pub fn new_bounded_size(max: PxSize) -> Self {
        Self::new_bounded(max.width, max.height)
    }

    /// New bounded to only allow the *size* and fill.
    ///
    /// The type [`PxSize`] can also be converted into fixed constraints.
    pub fn new_exact(x: Px, y: Px) -> Self {
        Self {
            x: PxConstraints::new_exact(x),
            y: PxConstraints::new_exact(y),
        }
    }

    /// New bounded to only allow the `size` and fill.
    pub fn new_exact_size(size: PxSize) -> Self {
        Self::new_exact(size.width, size.height)
    }

    /// New bounded to fill the maximum `x` and `y`.
    pub fn new_fill(x: Px, y: Px) -> Self {
        Self {
            x: PxConstraints::new_fill(x),
            y: PxConstraints::new_fill(y),
        }
    }

    /// New bounded to fill the maximum `size`.
    pub fn new_fill_size(size: PxSize) -> Self {
        Self::new_fill(size.width, size.height)
    }

    /// New bounded to a inclusive range.
    ///
    /// A tuple of two [`PxSize`] values can also be converted to these constraints.
    ///
    /// # Panics
    ///
    /// Panics if min is greater then max.
    pub fn new_range(min_x: Px, max_x: Px, min_y: Px, max_y: Px) -> Self {
        Self {
            x: PxConstraints::new_range(min_x, max_x),
            y: PxConstraints::new_range(min_y, max_y),
        }
    }

    /// Returns a copy of the current constraints that has `min_x` and `min_y` as the lower
    /// bound and max adjusted to be >= min in both axis.
    pub fn with_new_min(mut self, min_x: Px, min_y: Px) -> Self {
        self.x = self.x.with_new_min(min_x);
        self.y = self.y.with_new_min(min_y);
        self
    }

    /// Returns a copy of the current constraints that has `min_x` and `min_y` as the lower
    /// bound and max adjusted to be >= min in both axis, if the new min is greater then the current min.
    pub fn with_min(mut self, min_x: Px, min_y: Px) -> Self {
        self.x = self.x.with_min(min_x);
        self.y = self.y.with_min(min_y);
        self
    }

    /// Returns a copy of the current constraints that has `min` as the lower
    /// bound and max adjusted to be >= min in both axis.
    pub fn with_new_min_size(self, min: PxSize) -> Self {
        self.with_new_min(min.width, min.height)
    }

    /// Returns a copy of the current constraints that has `min` as the lower
    /// bound and max adjusted to be >= min in both axis, if the new min is greater then the current min.
    pub fn with_min_size(self, min: PxSize) -> Self {
        self.with_min(min.width, min.height)
    }

    /// Returns a copy of the current constraints that has `min_x` as the lower
    /// bound and max adjusted to be >= min in the **x** axis.
    pub fn with_new_min_x(mut self, min_x: Px) -> Self {
        self.x = self.x.with_new_min(min_x);
        self
    }

    /// Returns a copy of the current constraints that has `min_y` as the lower
    /// bound and max adjusted to be >= min in the **y** axis.
    pub fn with_new_min_y(mut self, min_y: Px) -> Self {
        self.y = self.y.with_new_min(min_y);
        self
    }

    /// Returns a copy of the current constraints that has `min_x` as the lower
    /// bound and max adjusted to be >= min in the **x** axis if the new min is greater then the current min.
    pub fn with_min_x(mut self, min_x: Px) -> Self {
        self.x = self.x.with_min(min_x);
        self
    }

    /// Returns a copy of the current constraints that has `min_y` as the lower
    /// bound and max adjusted to be >= min in the **y** axis if the new min is greater then the current min.
    pub fn with_min_y(mut self, min_y: Px) -> Self {
        self.y = self.y.with_min(min_y);
        self
    }

    /// Returns a copy of the current constraints that has `max_x` and `max_y` as the upper
    /// bound and min adjusted to be <= max in both axis.
    pub fn with_new_max(mut self, max_x: Px, max_y: Px) -> Self {
        self.x = self.x.with_new_max(max_x);
        self.y = self.y.with_new_max(max_y);
        self
    }

    /// Returns a copy of the current constraints that has `max_x` and `max_y` as the upper
    /// bound and min adjusted to be <= max in both axis if the new max if less then the current max.
    pub fn with_max(mut self, max_x: Px, max_y: Px) -> Self {
        self.x = self.x.with_max(max_x);
        self.y = self.y.with_max(max_y);
        self
    }

    /// Returns a copy of the current constraints that has `max` as the upper
    /// bound and min adjusted to be <= max in both axis.
    pub fn with_new_max_size(self, max: PxSize) -> Self {
        self.with_new_max(max.width, max.height)
    }

    /// Returns a copy of the current constraints that has `max` as the upper
    /// bound and min adjusted to be <= max in both axis if the new max if less then the current max.
    pub fn with_max_size(self, max: PxSize) -> Self {
        self.with_max(max.width, max.height)
    }

    /// Returns a copy of the current constraints that has `min_x` as the lower
    /// bound and max adjusted to be << max in the **x** axis.
    pub fn with_new_max_x(mut self, max_x: Px) -> Self {
        self.x = self.x.with_new_max(max_x);
        self
    }

    /// Returns a copy of the current constraints that has `max_y` as the lower
    /// bound and min adjusted to be <= max in the **y** axis.
    pub fn with_new_max_y(mut self, max_y: Px) -> Self {
        self.y = self.y.with_new_max(max_y);
        self
    }

    /// Returns a copy of the current constraints that has `min_x` as the lower
    /// bound and max adjusted to be << max in the **x** axis if the new max if less then the current max.
    pub fn with_max_x(mut self, max_x: Px) -> Self {
        self.x = self.x.with_max(max_x);
        self
    }

    /// Returns a copy of the current constraints that has `max_y` as the lower
    /// bound and min adjusted to be <= max in the **y** axis if the new max if less then the current max.
    pub fn with_max_y(mut self, max_y: Px) -> Self {
        self.y = self.y.with_max(max_y);
        self
    }

    /// Returns a copy with min and max bounds set to `x` and `y`.
    pub fn with_new_exact(mut self, x: Px, y: Px) -> Self {
        self.x = self.x.with_new_exact(x);
        self.y = self.y.with_new_exact(y);
        self
    }

    /// Returns a copy with min and max bounds set to `x` and `y` clamped by the current constraints.
    pub fn with_exact(mut self, x: Px, y: Px) -> Self {
        self.x = self.x.with_exact(x);
        self.y = self.y.with_exact(y);
        self
    }

    /// Returns a copy with min and max bounds set to `size`.
    pub fn with_new_exact_size(self, size: PxSize) -> Self {
        self.with_new_exact(size.width, size.height)
    }

    /// Returns a copy with min and max bounds set to `size` clamped by the current constraints.
    pub fn with_exact_size(self, size: PxSize) -> Self {
        self.with_exact(size.width, size.height)
    }

    /// Returns a copy of the current constraints with the **x** maximum and minimum set to `x`.
    pub fn with_new_exact_x(mut self, x: Px) -> Self {
        self.x = self.x.with_new_exact(x);
        self
    }

    /// Returns a copy of the current constraints with the **y** maximum and minimum set to `y`.
    pub fn with_new_exact_y(mut self, y: Px) -> Self {
        self.y = self.y.with_new_exact(y);
        self
    }

    /// Returns a copy of the current constraints with the **x** maximum and minimum set to `x`
    /// clamped by the current constraints.
    pub fn with_exact_x(mut self, x: Px) -> Self {
        self.x = self.x.with_exact(x);
        self
    }

    /// Returns a copy of the current constraints with the **y** maximum and minimum set to `y`
    /// clamped by the current constraints.
    pub fn with_exact_y(mut self, y: Px) -> Self {
        self.y = self.y.with_exact(y);
        self
    }

    /// Returns a copy of the current constraints that sets the `fill_x` and `fill_y` preference.
    pub fn with_fill(mut self, fill_x: bool, fill_y: bool) -> Self {
        self.x = self.x.with_fill(fill_x);
        self.y = self.y.with_fill(fill_y);
        self
    }

    /// Returns a copy of the current constraints that sets the fill preference to *current && fill*.
    pub fn with_fill_and(mut self, fill_x: bool, fill_y: bool) -> Self {
        self.x = self.x.with_fill_and(fill_x);
        self.y = self.y.with_fill_and(fill_y);
        self
    }

    /// Returns a copy of the current constraints that sets the `fill` preference
    pub fn with_fill_vector(self, fill: BoolVector2D) -> Self {
        self.with_fill(fill.x, fill.y)
    }

    /// Returns a copy of the current constraints that sets the `fill_x` preference.
    pub fn with_fill_x(mut self, fill_x: bool) -> Self {
        self.x = self.x.with_fill(fill_x);
        self
    }

    /// Returns a copy of the current constraints that sets the `fill_y` preference.
    pub fn with_fill_y(mut self, fill_y: bool) -> Self {
        self.y = self.y.with_fill(fill_y);
        self
    }

    /// Returns a copy of the current constraints without upper bound in both axis.
    pub fn with_unbounded(mut self) -> Self {
        self.x = self.x.with_unbounded();
        self.y = self.y.with_unbounded();
        self
    }

    /// Returns a copy of the current constraints without a upper bound in the **x** axis.
    pub fn with_unbounded_x(mut self) -> Self {
        self.x = self.x.with_unbounded();
        self
    }

    /// Returns a copy of the current constraints without a upper bound in the **y** axis.
    pub fn with_unbounded_y(mut self) -> Self {
        self.y = self.y.with_unbounded();
        self
    }

    /// Returns a copy of the current constraints with `sub_x` and `sub_y` subtracted from the min and max bounds.
    ///
    /// The subtraction is saturating, does not subtract max if unbounded.
    pub fn with_less(mut self, sub_x: Px, sub_y: Px) -> Self {
        self.x = self.x.with_less(sub_x);
        self.y = self.y.with_less(sub_y);
        self
    }

    /// Returns a copy of the current constraints with `sub` subtracted from the min and max bounds.
    ///
    /// The subtraction is saturating, does not subtract max if unbounded.
    pub fn with_less_size(self, sub: PxSize) -> Self {
        self.with_less(sub.width, sub.height)
    }

    /// Returns a copy of the current constraints with `sub_x` subtracted from the min and max bounds of the **x** axis.
    ///
    /// The subtraction is saturating, does not subtract max if unbounded.
    pub fn with_less_x(mut self, sub_x: Px) -> Self {
        self.x = self.x.with_less(sub_x);
        self
    }

    /// Returns a copy of the current constraints with `sub_y` subtracted from the min and max bounds of the **y** axis.
    ///
    /// The subtraction is saturating, does not subtract max if unbounded.
    pub fn with_less_y(mut self, sub_y: Px) -> Self {
        self.y = self.y.with_less(sub_y);
        self
    }

    /// Returns a copy of the current constraints with `add_x` and `add_y` added to the maximum bounds.
    ///
    /// Does a saturation addition, this can potentially unbound the constraints if [`Px::MAX`] is reached.
    pub fn with_more(mut self, add_x: Px, add_y: Px) -> Self {
        self.x = self.x.with_more(add_x);
        self.y = self.y.with_more(add_y);
        self
    }

    /// Returns a copy of the current constraints with `add` added to the maximum bounds.
    ///
    /// Does a saturation addition, this can potentially unbound the constraints if [`Px::MAX`] is reached.
    pub fn with_more_size(self, add: PxSize) -> Self {
        self.with_more(add.width, add.height)
    }

    /// Returns a copy of the current constraints with [`x`] modified by the closure.
    ///
    /// [`x`]: Self::x
    pub fn with_x(mut self, x: impl FnOnce(PxConstraints) -> PxConstraints) -> Self {
        self.x = x(self.x);
        self
    }

    /// Returns a copy of the current constraints with [`y`] modified by the closure.
    ///
    /// [`y`]: Self::y
    pub fn with_y(mut self, y: impl FnOnce(PxConstraints) -> PxConstraints) -> Self {
        self.y = y(self.y);
        self
    }

    /// Gets if the constraints have an upper bound.
    pub fn is_bounded(self) -> BoolVector2D {
        BoolVector2D {
            x: self.x.is_bounded(),
            y: self.y.is_bounded(),
        }
    }

    /// Gets if the constraints have no upper bound.
    pub fn is_unbounded(self) -> BoolVector2D {
        BoolVector2D {
            x: self.x.is_unbounded(),
            y: self.y.is_unbounded(),
        }
    }

    /// Gets if the constraints only allow one length.
    pub fn is_exact(self) -> BoolVector2D {
        BoolVector2D {
            x: self.x.is_exact(),
            y: self.y.is_exact(),
        }
    }

    /// Gets if the context prefers the maximum length over the minimum.
    ///
    /// Note that if the constraints are unbounded there is not maximum length, in this case the fill length is the minimum.
    pub fn is_fill_pref(self) -> BoolVector2D {
        BoolVector2D {
            x: self.x.is_fill_pref(),
            y: self.y.is_fill_pref(),
        }
    }

    /// Gets if the context prefers the maximum length over the minimum and there is a maximum length.
    pub fn is_fill_max(self) -> BoolVector2D {
        BoolVector2D {
            x: self.x.is_fill_max(),
            y: self.y.is_fill_max(),
        }
    }

    /// Gets the fixed size if the constraints only allow one length in both axis.
    pub fn fixed_size(self) -> Option<PxSize> {
        Some(PxSize::new(self.x.exact()?, self.y.exact()?))
    }

    /// Gets the maximum allowed size, or `None` if is unbounded in any of the axis.
    ///
    /// The maximum is inclusive.
    pub fn max_size(self) -> Option<PxSize> {
        Some(PxSize::new(self.x.max()?, self.y.max()?))
    }

    /// Gets the minimum allowed size.
    //
    /// The minimum is inclusive.
    pub fn min_size(self) -> PxSize {
        PxSize::new(self.x.min(), self.y.min())
    }

    /// Clamp the `size` by min and max.
    pub fn clamp_size(self, size: PxSize) -> PxSize {
        PxSize::new(self.x.clamp(size.width), self.y.clamp(size.height))
    }

    /// Gets the fill size, if fill is `true` this is the maximum length, otherwise it is the minimum length.
    pub fn fill_size(self) -> PxSize {
        PxSize::new(self.x.fill(), self.y.fill())
    }

    /// Gets the maximum if fill is preferred and max is bounded, or `size` clamped by the constraints.
    pub fn fill_size_or(self, size: PxSize) -> PxSize {
        PxSize::new(self.x.fill_or(size.width), self.y.fill_or(size.height))
    }

    /// Gets the max size if is fill and has max bounds, or gets the exact size if min equals max.
    pub fn fill_or_exact(self) -> Option<PxSize> {
        Some(PxSize::new(self.x.fill_or_exact()?, self.y.fill_or_exact()?))
    }

    /// Gets the maximum size if bounded, or the `size` clamped by constraints.
    pub fn max_size_or(self, size: PxSize) -> PxSize {
        PxSize::new(self.x.max_or(size.width), self.y.max_or(size.height))
    }

    /// Gets the maximum size if bounded, or the minimum if not.
    pub fn max_bounded_size(self) -> PxSize {
        PxSize::new(self.x.max_bounded(), self.y.max_bounded())
    }

    /// Gets the maximum fill size that preserves the `size` ratio.
    pub fn fill_ratio(self, size: PxSize) -> PxSize {
        if self.x.is_unbounded() {
            if self.y.is_unbounded() {
                // cover min
                let container = size.max(self.min_size()).to_f32();
                let content = size.to_f32();
                let scale = (container.width / content.width).max(container.height / content.height).fct();
                size * scale
            } else {
                // expand height
                let height = self.y.fill_or(size.height.max(self.y.min));
                let scale = (height.0 as f32 / size.height.0 as f32).fct();
                PxSize::new(size.width * scale, height)
            }
        } else if self.y.is_unbounded() {
            // expand width
            let width = self.x.fill_or(size.width.max(self.x.min));
            let scale = (width.0 as f32 / size.width.0 as f32).fct();
            PxSize::new(width, size.height * scale)
        } else if self.x.is_fill_pref() || self.y.is_fill_pref() {
            // contain max & clamp min
            let container = self.fill_size_or(size).to_f32();
            let content = size.to_f32();
            let scale = (container.width / content.width).min(container.height / content.height).fct();

            (size * scale).max(self.min_size())
        } else {
            // cover min & clamp max
            let container = self.min_size().to_f32();
            let content = size.to_f32();
            let scale = (container.width / content.width).max(container.height / content.height).fct();

            (size * scale).min(PxSize::new(self.x.max, self.y.max))
        }
    }
}
impl_from_and_into_var! {
    /// New exact.
    fn from(size: PxSize) -> PxConstraints2d {
        PxConstraints2d::new_exact(size.width, size.height)
    }

    /// New range, the minimum and maximum is computed.
    fn from((a, b): (PxSize, PxSize)) -> PxConstraints2d {
        PxConstraints2d {
            x: if a.width > b.width {
                PxConstraints::new_range(b.width, a.width)
            } else {
                PxConstraints::new_range(a.width, b.width)
            },
            y: if a.height > b.height {
                PxConstraints::new_range(b.height, a.height)
            } else {
                PxConstraints::new_range(a.height, b.height)
            },
        }
    }
}
impl Default for PxConstraints2d {
    fn default() -> Self {
        Self::new_unbounded()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn fill_ratio_unbounded_no_min() {
        let constraints = PxConstraints2d::new_unbounded();

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(size, filled)
    }

    #[test]
    fn fill_ratio_unbounded_with_min_x() {
        let constraints = PxConstraints2d::new_unbounded().with_min_x(Px(800));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_unbounded_with_min_y() {
        let constraints = PxConstraints2d::new_unbounded().with_min_y(Px(400));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_bounded_x() {
        let constraints = PxConstraints2d::new_fill(Px(800), Px::MAX);

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_bounded_y() {
        let constraints = PxConstraints2d::new_fill(Px::MAX, Px(400));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_bounded1() {
        let constraints = PxConstraints2d::new_fill(Px(800), Px(400));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_bounded2() {
        let constraints = PxConstraints2d::new_fill(Px(400), Px(400));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(400), Px(200)))
    }

    #[test]
    fn fill_ratio_exact() {
        let constraints = PxConstraints2d::new_exact(Px(123), Px(321));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(123), Px(321)))
    }

    #[test]
    fn fill_ratio_no_fill_bounded_with_min_x() {
        let constraints = PxConstraints2d::new_bounded(Px(1000), Px(1000)).with_min_x(Px(800));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }

    #[test]
    fn fill_ratio_no_fill_bounded_with_min_y() {
        let constraints = PxConstraints2d::new_bounded(Px(1000), Px(1000)).with_min_y(Px(400));

        let size = PxSize::new(Px(400), Px(200));
        let filled = constraints.fill_ratio(size);

        assert_eq!(filled, PxSize::new(Px(800), Px(400)))
    }
}