zng_task/lib.rs
1#![doc(html_favicon_url = "https://zng-ui.github.io/res/zng-logo-icon.png")]
2#![doc(html_logo_url = "https://zng-ui.github.io/res/zng-logo.png")]
3//!
4//! Parallel async tasks and async task runners.
5//!
6//! # Crate
7//!
8#![doc = include_str!(concat!("../", std::env!("CARGO_PKG_README")))]
9#![warn(unused_extern_crates)]
10#![warn(missing_docs)]
11
12use std::{
13 any::Any,
14 fmt,
15 hash::Hash,
16 mem, panic,
17 pin::Pin,
18 sync::{
19 Arc,
20 atomic::{AtomicBool, Ordering},
21 },
22 task::Poll,
23};
24
25#[doc(no_inline)]
26pub use parking_lot;
27use parking_lot::Mutex;
28
29use zng_app_context::{LocalContext, app_local};
30use zng_time::Deadline;
31use zng_var::{ResponseVar, VarValue, response_done_var, response_var};
32
33#[cfg(test)]
34mod tests;
35
36#[doc(no_inline)]
37pub use rayon;
38
39/// Async filesystem primitives.
40///
41/// This module is the [async-fs](https://docs.rs/async-fs) crate re-exported for convenience.
42pub mod fs {
43 #[doc(inline)]
44 pub use async_fs::*;
45}
46
47pub mod channel;
48pub mod io;
49mod ui;
50
51pub mod http;
52
53pub mod ipc;
54
55mod rayon_ctx;
56
57pub use rayon_ctx::*;
58
59pub use ui::*;
60
61mod progress;
62pub use progress::*;
63
64/// Spawn a parallel async task, this function is not blocking and the `task` starts executing immediately.
65///
66/// # Parallel
67///
68/// The task runs in the primary [`rayon`] thread-pool, every [`poll`](Future::poll) happens inside a call to `rayon::spawn`.
69///
70/// You can use parallel iterators, `join` or any of rayon's utilities inside `task` to make it multi-threaded,
71/// otherwise it will run in a single thread at a time, still not blocking the UI.
72///
73/// The [`rayon`] crate is re-exported in `task::rayon` for convenience and compatibility.
74///
75/// # Async
76///
77/// The `task` is also a future so you can `.await`, after each `.await` the task continues executing in whatever `rayon` thread
78/// is free, so the `task` should either be doing CPU intensive work or awaiting, blocking IO operations
79/// block the thread from being used by other tasks reducing overall performance. You can use [`wait`] for IO
80/// or blocking operations and for networking you can use any of the async crates, as long as they start their own *event reactor*.
81///
82/// The `task` lives inside the [`Waker`] when awaiting and inside `rayon::spawn` when running.
83///
84/// # Examples
85///
86/// ```
87/// # use zng_task::{self as task, *, rayon::iter::*};
88/// # use zng_var::*;
89/// # struct SomeStruct { sum_response: ResponseVar<usize> }
90/// # impl SomeStruct {
91/// fn on_event(&mut self) {
92/// let (responder, response) = response_var();
93/// self.sum_response = response;
94///
95/// task::spawn(async move {
96/// let r = (0..1000).into_par_iter().map(|i| i * i).sum();
97///
98/// responder.respond(r);
99/// });
100/// }
101///
102/// fn on_update(&mut self) {
103/// if let Some(result) = self.sum_response.rsp_new() {
104/// println!("sum of squares 0..1000: {result}");
105/// }
106/// }
107/// # }
108/// ```
109///
110/// The example uses the `rayon` parallel iterator to compute a result and uses a [`response_var`] to send the result to the UI.
111/// The task captures the caller [`LocalContext`] so the response variable will set correctly.
112///
113/// Note that this function is the most basic way to spawn a parallel task where you must setup channels to the rest of the app yourself,
114/// you can use [`respond`] to avoid having to manually set a response, or [`run`] to `.await` the result.
115///
116/// # Panic Handling
117///
118/// If the `task` panics the panic message is logged as an error, and can observed using [`set_spawn_panic_handler`]. It
119/// is otherwise ignored.
120///
121/// # Unwind Safety
122///
123/// This function disables the [unwind safety validation], meaning that in case of a panic shared
124/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
125/// poisoning mutexes or atomics to mutate shared data or use [`run_catch`] to detect a panic or [`run`]
126/// to propagate a panic.
127///
128/// [unwind safety validation]: std::panic::UnwindSafe
129/// [`Waker`]: std::task::Waker
130/// [`rayon`]: https://docs.rs/rayon
131/// [`LocalContext`]: zng_app_context::LocalContext
132/// [`response_var`]: zng_var::response_var
133pub fn spawn<F>(task: impl IntoFuture<IntoFuture = F>)
134where
135 F: Future<Output = ()> + Send + 'static,
136{
137 Arc::new(RayonTask {
138 ctx: LocalContext::capture(),
139 fut: Mutex::new(Some(Box::pin(task.into_future()))),
140 })
141 .poll()
142}
143
144/// Polls the `task` once immediately on the calling thread, if the `task` is pending, continues execution in [`spawn`].
145pub fn poll_spawn<F>(task: impl IntoFuture<IntoFuture = F>)
146where
147 F: Future<Output = ()> + Send + 'static,
148{
149 struct PollRayonTask {
150 fut: Mutex<Option<(RayonSpawnFut, Option<LocalContext>)>>,
151 }
152 impl PollRayonTask {
153 // start task in calling thread
154 fn poll(self: Arc<Self>) {
155 let mut task = self.fut.lock();
156 let (mut t, _) = task.take().unwrap();
157
158 let waker = self.clone().into();
159
160 match t.as_mut().poll(&mut std::task::Context::from_waker(&waker)) {
161 Poll::Ready(()) => {}
162 Poll::Pending => {
163 let ctx = LocalContext::capture();
164 *task = Some((t, Some(ctx)));
165 }
166 }
167 }
168 }
169 impl std::task::Wake for PollRayonTask {
170 fn wake(self: Arc<Self>) {
171 // continue task in spawn threads
172 if let Some((task, Some(ctx))) = self.fut.lock().take() {
173 Arc::new(RayonTask {
174 ctx,
175 fut: Mutex::new(Some(Box::pin(task))),
176 })
177 .poll();
178 }
179 }
180 }
181
182 Arc::new(PollRayonTask {
183 fut: Mutex::new(Some((Box::pin(task.into_future()), None))),
184 })
185 .poll()
186}
187
188type RayonSpawnFut = Pin<Box<dyn Future<Output = ()> + Send>>;
189
190// A future that is its own waker that polls inside rayon spawn tasks.
191struct RayonTask {
192 ctx: LocalContext,
193 fut: Mutex<Option<RayonSpawnFut>>,
194}
195impl RayonTask {
196 fn poll(self: Arc<Self>) {
197 rayon::spawn(move || {
198 // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
199 let mut task = self.fut.lock();
200 if let Some(mut t) = task.take() {
201 let waker = self.clone().into();
202
203 // load app context
204 self.ctx.clone().with_context(move || {
205 let r = panic::catch_unwind(panic::AssertUnwindSafe(move || {
206 // poll future
207 if t.as_mut().poll(&mut std::task::Context::from_waker(&waker)).is_pending() {
208 // not done
209 *task = Some(t);
210 }
211 }));
212 if let Err(p) = r {
213 let p = TaskPanicError::new(p);
214 tracing::error!("panic in `task::spawn`: {}", p.panic_str().unwrap_or(""));
215 on_spawn_panic(p);
216 }
217 });
218 }
219 })
220 }
221}
222impl std::task::Wake for RayonTask {
223 fn wake(self: Arc<Self>) {
224 self.poll()
225 }
226}
227
228/// Rayon join with local context.
229///
230/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
231/// operations.
232///
233/// See `rayon::join` for more details about join.
234///
235/// [`LocalContext`]: zng_app_context::LocalContext
236pub fn join<A, B, RA, RB>(op_a: A, op_b: B) -> (RA, RB)
237where
238 A: FnOnce() -> RA + Send,
239 B: FnOnce() -> RB + Send,
240 RA: Send,
241 RB: Send,
242{
243 self::join_context(move |_| op_a(), move |_| op_b())
244}
245
246/// Rayon join context with local context.
247///
248/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
249/// operations.
250///
251/// See `rayon::join_context` for more details about join.
252///
253/// [`LocalContext`]: zng_app_context::LocalContext
254pub fn join_context<A, B, RA, RB>(op_a: A, op_b: B) -> (RA, RB)
255where
256 A: FnOnce(rayon::FnContext) -> RA + Send,
257 B: FnOnce(rayon::FnContext) -> RB + Send,
258 RA: Send,
259 RB: Send,
260{
261 let ctx = LocalContext::capture();
262 let ctx = &ctx;
263 rayon::join_context(
264 move |a| {
265 if a.migrated() {
266 ctx.clone().with_context(|| op_a(a))
267 } else {
268 op_a(a)
269 }
270 },
271 move |b| {
272 if b.migrated() {
273 ctx.clone().with_context(|| op_b(b))
274 } else {
275 op_b(b)
276 }
277 },
278 )
279}
280
281/// Rayon scope with local context.
282///
283/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
284/// operations.
285///
286/// See `rayon::scope` for more details about scope.
287///
288/// [`LocalContext`]: zng_app_context::LocalContext
289pub fn scope<'scope, OP, R>(op: OP) -> R
290where
291 OP: FnOnce(ScopeCtx<'_, 'scope>) -> R + Send,
292 R: Send,
293{
294 let ctx = LocalContext::capture();
295
296 // Cast `&'_ ctx` to `&'scope ctx` to "inject" the context in the scope.
297 // Is there a better way to do this? I hope so.
298 //
299 // SAFETY:
300 // * We are extending `'_` to `'scope`, that is one of the documented valid usages of `transmute`.
301 // * No use after free because `rayon::scope` joins all threads before returning and we only drop `ctx` after.
302 let ctx_ref: &'_ LocalContext = &ctx;
303 let ctx_scope_ref: &'scope LocalContext = unsafe { std::mem::transmute(ctx_ref) };
304
305 let r = rayon::scope(move |s| {
306 op(ScopeCtx {
307 scope: s,
308 ctx: ctx_scope_ref,
309 })
310 });
311
312 drop(ctx);
313
314 r
315}
316
317/// Represents a fork-join scope which can be used to spawn any number of tasks that run in the caller's thread context.
318///
319/// See [`scope`] for more details.
320#[derive(Clone, Copy, Debug)]
321pub struct ScopeCtx<'a, 'scope: 'a> {
322 scope: &'a rayon::Scope<'scope>,
323 ctx: &'scope LocalContext,
324}
325impl<'a, 'scope: 'a> ScopeCtx<'a, 'scope> {
326 /// Spawns a job into the fork-join scope `self`. The job runs in the captured thread context.
327 ///
328 /// See `rayon::Scope::spawn` for more details.
329 pub fn spawn<F>(self, f: F)
330 where
331 F: FnOnce(ScopeCtx<'_, 'scope>) + Send + 'scope,
332 {
333 let ctx = self.ctx;
334 self.scope
335 .spawn(move |s| ctx.clone().with_context(move || f(ScopeCtx { scope: s, ctx })));
336 }
337}
338
339/// Spawn a parallel async task that can also be `.await` for the task result.
340///
341/// # Parallel
342///
343/// The task runs in the primary [`rayon`] thread-pool, every [`poll`](Future::poll) happens inside a call to `rayon::spawn`.
344///
345/// You can use parallel iterators, `join` or any of rayon's utilities inside `task` to make it multi-threaded,
346/// otherwise it will run in a single thread at a time, still not blocking the UI.
347///
348/// The [`rayon`] crate is re-exported in `task::rayon` for convenience and compatibility.
349///
350/// # Async
351///
352/// The `task` is also a future so you can `.await`, after each `.await` the task continues executing in whatever `rayon` thread
353/// is free, so the `task` should either be doing CPU intensive work or awaiting, blocking IO operations
354/// block the thread from being used by other tasks reducing overall performance. You can use [`wait`] for IO
355/// or blocking operations and for networking you can use any of the async crates, as long as they start their own *event reactor*.
356///
357/// The `task` lives inside the [`Waker`] when awaiting and inside `rayon::spawn` when running.
358///
359/// # Examples
360///
361/// ```
362/// # use zng_task::{self as task, rayon::iter::*};
363/// # struct SomeStruct { sum: usize }
364/// # async fn read_numbers() -> Vec<usize> { vec![] }
365/// # impl SomeStruct {
366/// async fn on_event(&mut self) {
367/// self.sum = task::run(async { read_numbers().await.par_iter().map(|i| i * i).sum() }).await;
368/// }
369/// # }
370/// ```
371///
372/// The example `.await` for some numbers and then uses a parallel iterator to compute a result, this all runs in parallel
373/// because it is inside a `run` task. The task result is then `.await` inside one of the UI async tasks. Note that the
374/// task captures the caller [`LocalContext`] so you can interact with variables and UI services directly inside the task too.
375///
376/// # Cancellation
377///
378/// The task starts running immediately, awaiting the returned future merely awaits for a message from the worker threads and
379/// that means the `task` future is not owned by the returned future. Usually to *cancel* a future you only need to drop it,
380/// in this task dropping the returned future will only drop the `task` once it reaches a `.await` point and detects that the
381/// result channel is disconnected.
382///
383/// If you want to deterministically known that the `task` was cancelled use a cancellation signal.
384///
385/// # Panic Propagation
386///
387/// If the `task` panics the panic is resumed in the awaiting thread using [`resume_unwind`]. You
388/// can use [`run_catch`] to get the panic as an error instead.
389///
390/// [`resume_unwind`]: panic::resume_unwind
391/// [`Waker`]: std::task::Waker
392/// [`rayon`]: https://docs.rs/rayon
393/// [`LocalContext`]: zng_app_context::LocalContext
394pub async fn run<R, T>(task: impl IntoFuture<IntoFuture = T>) -> R
395where
396 R: Send + 'static,
397 T: Future<Output = R> + Send + 'static,
398{
399 match run_catch(task).await {
400 Ok(r) => r,
401 Err(p) => panic::resume_unwind(p.payload),
402 }
403}
404
405/// Like [`run`] but catches panics.
406///
407/// This task works the same and has the same utility as [`run`], except if returns panic messages
408/// as an error instead of propagating the panic.
409///
410/// # Unwind Safety
411///
412/// This function disables the [unwind safety validation], meaning that in case of a panic shared
413/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
414/// poisoning mutexes or atomics to mutate shared data or discard all shared data used in the `task`
415/// if this function returns an error.
416///
417/// [unwind safety validation]: std::panic::UnwindSafe
418pub async fn run_catch<R, T>(task: impl IntoFuture<IntoFuture = T>) -> Result<R, TaskPanicError>
419where
420 R: Send + 'static,
421 T: Future<Output = R> + Send + 'static,
422{
423 type Fut<R> = Pin<Box<dyn Future<Output = R> + Send>>;
424
425 // A future that is its own waker that polls inside the rayon primary thread-pool.
426 struct RayonCatchTask<R> {
427 ctx: LocalContext,
428 fut: Mutex<Option<Fut<R>>>,
429 sender: flume::Sender<Result<R, TaskPanicError>>,
430 }
431 impl<R: Send + 'static> RayonCatchTask<R> {
432 fn poll(self: Arc<Self>) {
433 let sender = self.sender.clone();
434 if sender.is_disconnected() {
435 return; // cancel.
436 }
437 rayon::spawn(move || {
438 // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
439 let mut task = self.fut.lock();
440 if let Some(mut t) = task.take() {
441 let waker = self.clone().into();
442 let mut cx = std::task::Context::from_waker(&waker);
443
444 self.ctx.clone().with_context(|| {
445 let r = panic::catch_unwind(panic::AssertUnwindSafe(|| t.as_mut().poll(&mut cx)));
446 match r {
447 Ok(Poll::Ready(r)) => {
448 drop(task);
449 let _ = sender.send(Ok(r));
450 }
451 Ok(Poll::Pending) => {
452 *task = Some(t);
453 }
454 Err(p) => {
455 drop(task);
456 let _ = sender.send(Err(TaskPanicError::new(p)));
457 }
458 }
459 });
460 }
461 })
462 }
463 }
464 impl<R: Send + 'static> std::task::Wake for RayonCatchTask<R> {
465 fn wake(self: Arc<Self>) {
466 self.poll()
467 }
468 }
469
470 let (sender, receiver) = channel::bounded(1);
471
472 Arc::new(RayonCatchTask {
473 ctx: LocalContext::capture(),
474 fut: Mutex::new(Some(Box::pin(task.into_future()))),
475 sender: sender.into(),
476 })
477 .poll();
478
479 receiver.recv().await.unwrap()
480}
481
482/// Spawn a parallel async task that will send its result to a [`ResponseVar<R>`].
483///
484/// The [`run`] documentation explains how `task` is *parallel* and *async*. The `task` starts executing immediately.
485///
486/// # Examples
487///
488/// ```
489/// # use zng_task::{self as task, rayon::iter::*};
490/// # use zng_var::*;
491/// # struct SomeStruct { sum_response: ResponseVar<usize> }
492/// # async fn read_numbers() -> Vec<usize> { vec![] }
493/// # impl SomeStruct {
494/// fn on_event(&mut self) {
495/// self.sum_response = task::respond(async { read_numbers().await.par_iter().map(|i| i * i).sum() });
496/// }
497///
498/// fn on_update(&mut self) {
499/// if let Some(result) = self.sum_response.rsp_new() {
500/// println!("sum of squares: {result}");
501/// }
502/// }
503/// # }
504/// ```
505///
506/// The example `.await` for some numbers and then uses a parallel iterator to compute a result. The result is send to
507/// `sum_response` that is a [`ResponseVar<R>`].
508///
509/// # Cancellation
510///
511/// Dropping the [`ResponseVar<R>`] does not cancel the `task`, it will still run to completion.
512///
513/// # Panic Handling
514///
515/// If the `task` panics the panic is logged as an error and resumed in the response var modify closure.
516///
517/// [`resume_unwind`]: panic::resume_unwind
518/// [`ResponseVar<R>`]: zng_var::ResponseVar
519/// [`response_var`]: zng_var::response_var
520pub fn respond<R, F>(task: F) -> ResponseVar<R>
521where
522 R: VarValue,
523 F: Future<Output = R> + Send + 'static,
524{
525 type Fut<R> = Pin<Box<dyn Future<Output = R> + Send>>;
526
527 let (responder, response) = response_var();
528
529 // A future that is its own waker that polls inside the rayon primary thread-pool.
530 struct RayonRespondTask<R: VarValue> {
531 ctx: LocalContext,
532 fut: Mutex<Option<Fut<R>>>,
533 responder: zng_var::ResponderVar<R>,
534 }
535 impl<R: VarValue> RayonRespondTask<R> {
536 fn poll(self: Arc<Self>) {
537 let responder = self.responder.clone();
538 if responder.strong_count() == 2 {
539 return; // cancel.
540 }
541 rayon::spawn(move || {
542 // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
543 let mut task = self.fut.lock();
544 if let Some(mut t) = task.take() {
545 let waker = self.clone().into();
546 let mut cx = std::task::Context::from_waker(&waker);
547
548 self.ctx.clone().with_context(|| {
549 let r = panic::catch_unwind(panic::AssertUnwindSafe(|| t.as_mut().poll(&mut cx)));
550 match r {
551 Ok(Poll::Ready(r)) => {
552 drop(task);
553
554 responder.respond(r);
555 }
556 Ok(Poll::Pending) => {
557 *task = Some(t);
558 }
559 Err(p) => {
560 let p = TaskPanicError::new(p);
561 tracing::error!("panic in `task::respond`: {}", p.panic_str().unwrap_or(""));
562 drop(task);
563 responder.modify(move |_| panic::resume_unwind(p.payload));
564 }
565 }
566 });
567 }
568 })
569 }
570 }
571 impl<R: VarValue> std::task::Wake for RayonRespondTask<R> {
572 fn wake(self: Arc<Self>) {
573 self.poll()
574 }
575 }
576
577 Arc::new(RayonRespondTask {
578 ctx: LocalContext::capture(),
579 fut: Mutex::new(Some(Box::pin(task))),
580 responder,
581 })
582 .poll();
583
584 response
585}
586
587/// Polls the `task` once immediately on the calling thread, if the `task` is ready returns the response already set,
588/// if the `task` is pending continues execution like [`respond`].
589pub fn poll_respond<R, F>(task: impl IntoFuture<IntoFuture = F>) -> ResponseVar<R>
590where
591 R: VarValue,
592 F: Future<Output = R> + Send + 'static,
593{
594 enum QuickResponse<R: VarValue> {
595 Quick(Option<R>),
596 Response(zng_var::ResponderVar<R>),
597 }
598 let task = task.into_future();
599 let q = Arc::new(Mutex::new(QuickResponse::Quick(None)));
600 poll_spawn(zng_clone_move::async_clmv!(q, {
601 let rsp = task.await;
602
603 match &mut *q.lock() {
604 QuickResponse::Quick(q) => *q = Some(rsp),
605 QuickResponse::Response(r) => r.respond(rsp),
606 }
607 }));
608
609 let mut q = q.lock();
610 match &mut *q {
611 QuickResponse::Quick(q) if q.is_some() => response_done_var(q.take().unwrap()),
612 _ => {
613 let (responder, response) = response_var();
614 *q = QuickResponse::Response(responder);
615 response
616 }
617 }
618}
619
620/// Create a parallel `task` that blocks awaiting for an IO operation, the `task` starts on the first `.await`.
621///
622/// # Parallel
623///
624/// The `task` runs in the [`blocking`] thread-pool which is optimized for awaiting blocking operations.
625/// If the `task` is computation heavy you should use [`run`] and then `wait` inside that task for the
626/// parts that are blocking.
627///
628/// # Examples
629///
630/// ```
631/// # fn main() { }
632/// # use zng_task as task;
633/// # async fn example() {
634/// task::wait(|| std::fs::read_to_string("file.txt")).await
635/// # ; }
636/// ```
637///
638/// The example reads a file, that is a blocking file IO operation, most of the time is spend waiting for the operating system,
639/// so we offload this to a `wait` task. The task can be `.await` inside a [`run`] task or inside one of the UI tasks
640/// like in a async event handler.
641///
642/// # Async Read/Write
643///
644/// For [`std::io::Read`] and [`std::io::Write`] operations you can also use [`io`] and [`fs`] alternatives when you don't
645/// have or want the full file in memory or when you want to apply multiple operations to the file.
646///
647/// # Panic Propagation
648///
649/// If the `task` panics the panic is resumed in the awaiting thread using [`resume_unwind`]. You
650/// can use [`wait_catch`] to get the panic as an error instead.
651///
652/// [`blocking`]: https://docs.rs/blocking
653/// [`resume_unwind`]: panic::resume_unwind
654pub async fn wait<T, F>(task: F) -> T
655where
656 F: FnOnce() -> T + Send + 'static,
657 T: Send + 'static,
658{
659 match wait_catch(task).await {
660 Ok(r) => r,
661 Err(p) => panic::resume_unwind(p.payload),
662 }
663}
664
665/// Like [`wait`] but catches panics.
666///
667/// This task works the same and has the same utility as [`wait`], except if returns panic messages
668/// as an error instead of propagating the panic.
669///
670/// # Unwind Safety
671///
672/// This function disables the [unwind safety validation], meaning that in case of a panic shared
673/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
674/// poisoning mutexes or atomics to mutate shared data or discard all shared data used in the `task`
675/// if this function returns an error.
676///
677/// [unwind safety validation]: std::panic::UnwindSafe
678pub async fn wait_catch<T, F>(task: F) -> Result<T, TaskPanicError>
679where
680 F: FnOnce() -> T + Send + 'static,
681 T: Send + 'static,
682{
683 let mut ctx = LocalContext::capture();
684 blocking::unblock(move || ctx.with_context(move || panic::catch_unwind(panic::AssertUnwindSafe(task))))
685 .await
686 .map_err(TaskPanicError::new)
687}
688
689/// Fire and forget a [`wait`] task. The `task` starts executing immediately.
690///
691/// # Panic Handling
692///
693/// If the `task` panics the panic message is logged as an error, and can observed using [`set_spawn_panic_handler`]. It
694/// is otherwise ignored.
695///
696/// # Unwind Safety
697///
698/// This function disables the [unwind safety validation], meaning that in case of a panic shared
699/// data can end-up in an invalid (still memory safe) state. If you are worried about that only use
700/// poisoning mutexes or atomics to mutate shared data or use [`wait_catch`] to detect a panic or [`wait`]
701/// to propagate a panic.
702///
703/// [unwind safety validation]: std::panic::UnwindSafe
704pub fn spawn_wait<F>(task: F)
705where
706 F: FnOnce() + Send + 'static,
707{
708 spawn(async move {
709 if let Err(p) = wait_catch(task).await {
710 tracing::error!("parallel `spawn_wait` task panicked: {}", p.panic_str().unwrap_or(""));
711 on_spawn_panic(p);
712 }
713 });
714}
715
716/// Like [`spawn_wait`], but the task will send its result to a [`ResponseVar<R>`].
717///
718/// # Cancellation
719///
720/// Dropping the [`ResponseVar<R>`] does not cancel the `task`, it will still run to completion.
721///
722/// # Panic Handling
723///
724/// If the `task` panics the panic is logged as an error and resumed in the response var modify closure.
725pub fn wait_respond<R, F>(task: F) -> ResponseVar<R>
726where
727 R: VarValue,
728 F: FnOnce() -> R + Send + 'static,
729{
730 let (responder, response) = response_var();
731 spawn_wait(move || match panic::catch_unwind(panic::AssertUnwindSafe(task)) {
732 Ok(r) => responder.respond(r),
733 Err(p) => {
734 let p = TaskPanicError::new(p);
735 tracing::error!("panic in `task::wait_respond`: {}", p.panic_str().unwrap_or(""));
736 responder.modify(move |_| panic::resume_unwind(p.payload));
737 }
738 });
739 response
740}
741
742/// Blocks the thread until the `task` future finishes.
743///
744/// This function is useful for implementing async tests, using it in an app will probably cause
745/// the app to stop responding.
746///
747/// The crate [`futures-lite`] is used to execute the task.
748///
749/// # Examples
750///
751/// Test a [`run`] call:
752///
753/// ```
754/// use zng_task as task;
755/// # use zng_unit::*;
756/// # async fn foo(u: u8) -> Result<u8, ()> { task::deadline(1.ms()).await; Ok(u) }
757///
758/// #[test]
759/// # fn __() { }
760/// pub fn run_ok() {
761/// let r = task::block_on(task::run(async { foo(32).await }));
762///
763/// # let value =
764/// r.expect("foo(32) was not Ok");
765/// # assert_eq!(32, value);
766/// }
767/// # run_ok();
768/// ```
769///
770/// [`futures-lite`]: https://docs.rs/futures-lite/
771pub fn block_on<F>(task: impl IntoFuture<IntoFuture = F>) -> F::Output
772where
773 F: Future,
774{
775 futures_lite::future::block_on(task.into_future())
776}
777
778/// Continuous poll the `task` until if finishes.
779///
780/// This function is useful for implementing some async tests only, futures don't expect to be polled
781/// continuously. This function is only available in test builds.
782#[cfg(any(test, doc, feature = "test_util"))]
783pub fn spin_on<F>(task: impl IntoFuture<IntoFuture = F>) -> F::Output
784where
785 F: Future,
786{
787 use std::pin::pin;
788
789 let mut task = pin!(task.into_future());
790 block_on(future_fn(|cx| match task.as_mut().poll(cx) {
791 Poll::Ready(r) => Poll::Ready(r),
792 Poll::Pending => {
793 cx.waker().wake_by_ref();
794 Poll::Pending
795 }
796 }))
797}
798
799/// Executor used in async doc tests.
800///
801/// If `spin` is `true` the [`spin_on`] executor is used with a timeout of 500 milliseconds.
802/// IF `spin` is `false` the [`block_on`] executor is used with a timeout of 5 seconds.
803#[cfg(any(test, doc, feature = "test_util"))]
804pub fn doc_test<F>(spin: bool, task: impl IntoFuture<IntoFuture = F>) -> F::Output
805where
806 F: Future,
807{
808 use zng_unit::TimeUnits;
809
810 if spin {
811 spin_on(with_deadline(task, 500.ms())).expect("async doc-test timeout")
812 } else {
813 block_on(with_deadline(task, 5.secs())).expect("async doc-test timeout")
814 }
815}
816
817/// A future that is [`Pending`] once and wakes the current task.
818///
819/// After the first `.await` the future is always [`Ready`] and on the first `.await` it calls [`wake`].
820///
821/// [`Pending`]: std::task::Poll::Pending
822/// [`Ready`]: std::task::Poll::Ready
823/// [`wake`]: std::task::Waker::wake
824pub async fn yield_now() {
825 struct YieldNowFut(bool);
826 impl Future for YieldNowFut {
827 type Output = ();
828
829 fn poll(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
830 if self.0 {
831 Poll::Ready(())
832 } else {
833 self.0 = true;
834 cx.waker().wake_by_ref();
835 Poll::Pending
836 }
837 }
838 }
839
840 YieldNowFut(false).await
841}
842
843/// A future that is [`Pending`] until the `deadline` is reached.
844///
845/// # Examples
846///
847/// Await 5 seconds in a [`spawn`] parallel task:
848///
849/// ```
850/// use zng_task as task;
851/// use zng_unit::*;
852///
853/// task::spawn(async {
854/// println!("waiting 5 seconds..");
855/// task::deadline(5.secs()).await;
856/// println!("5 seconds elapsed.")
857/// });
858/// ```
859///
860/// The future runs on an app provider timer executor, or on the [`futures_timer`] by default.
861///
862/// Note that deadlines from [`Duration`](std::time::Duration) starts *counting* at the moment this function is called,
863/// not at the moment of the first `.await` call.
864///
865/// [`Pending`]: std::task::Poll::Pending
866/// [`futures_timer`]: https://docs.rs/futures-timer
867pub fn deadline(deadline: impl Into<Deadline>) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
868 let deadline = deadline.into();
869 if zng_app_context::LocalContext::current_app().is_some() {
870 DEADLINE_SV.read().0(deadline)
871 } else {
872 default_deadline(deadline)
873 }
874}
875
876app_local! {
877 static DEADLINE_SV: (DeadlineService, bool) = const { (default_deadline, false) };
878}
879
880type DeadlineService = fn(Deadline) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>>;
881
882fn default_deadline(deadline: Deadline) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
883 if let Some(timeout) = deadline.time_left() {
884 Box::pin(futures_timer::Delay::new(timeout))
885 } else {
886 Box::pin(std::future::ready(()))
887 }
888}
889
890/// Deadline APP integration.
891#[expect(non_camel_case_types)]
892pub struct DEADLINE_APP;
893
894impl DEADLINE_APP {
895 /// Called by the app implementer to setup the [`deadline`] executor.
896 ///
897 /// If no app calls this the [`futures_timer`] executor is used.
898 ///
899 /// [`futures_timer`]: https://docs.rs/futures-timer
900 ///
901 /// # Panics
902 ///
903 /// Panics if called more than once for the same app.
904 pub fn init_deadline_service(&self, service: DeadlineService) {
905 let (prev, already_set) = mem::replace(&mut *DEADLINE_SV.write(), (service, true));
906 if already_set {
907 *DEADLINE_SV.write() = (prev, true);
908 panic!("deadline service already inited for this app");
909 }
910 }
911}
912
913/// Implements a [`Future`] from a closure.
914///
915/// # Examples
916///
917/// A future that is ready with a closure returns `Some(R)`.
918///
919/// ```
920/// use std::task::Poll;
921/// use zng_task as task;
922///
923/// async fn ready_some<R>(mut closure: impl FnMut() -> Option<R>) -> R {
924/// task::future_fn(|cx| match closure() {
925/// Some(r) => Poll::Ready(r),
926/// None => Poll::Pending,
927/// })
928/// .await
929/// }
930/// ```
931pub async fn future_fn<T, F>(fn_: F) -> T
932where
933 F: FnMut(&mut std::task::Context) -> Poll<T>,
934{
935 struct PollFn<F>(F);
936 impl<F> Unpin for PollFn<F> {}
937 impl<T, F: FnMut(&mut std::task::Context<'_>) -> Poll<T>> Future for PollFn<F> {
938 type Output = T;
939
940 fn poll(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
941 (self.0)(cx)
942 }
943 }
944 PollFn(fn_).await
945}
946
947/// Error when [`with_deadline`] reach a time limit before a task finishes.
948#[derive(Debug, Clone, Copy)]
949#[non_exhaustive]
950pub struct DeadlineError {}
951impl fmt::Display for DeadlineError {
952 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
953 write!(f, "reached deadline")
954 }
955}
956impl std::error::Error for DeadlineError {}
957
958/// Add a [`deadline`] to a future.
959///
960/// Returns the `fut` output or [`DeadlineError`] if the deadline elapses first.
961pub async fn with_deadline<O, F: Future<Output = O>>(
962 fut: impl IntoFuture<IntoFuture = F>,
963 deadline: impl Into<Deadline>,
964) -> Result<F::Output, DeadlineError> {
965 let deadline = deadline.into();
966 any!(async { Ok(fut.await) }, async {
967 self::deadline(deadline).await;
968 Err(DeadlineError {})
969 })
970 .await
971}
972
973/// <span data-del-macro-root></span> A future that *zips* other futures.
974///
975/// The macro input is a comma separated list of future expressions. The macro output is a future
976/// that when ".awaited" produces a tuple of results in the same order as the inputs.
977///
978/// At least one input future is required and any number of futures is accepted. For more than
979/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
980/// some IDEs.
981///
982/// Each input must implement [`IntoFuture`]. Note that each input must be known at compile time, use the [`fn@all`] async
983/// function to await on all futures in a dynamic list of futures.
984///
985/// # Examples
986///
987/// Await for three different futures to complete:
988///
989/// ```
990/// use zng_task as task;
991///
992/// # task::doc_test(false, async {
993/// let (a, b, c) = task::all!(task::run(async { 'a' }), task::wait(|| "b"), async { b"c" }).await;
994/// # });
995/// ```
996#[macro_export]
997macro_rules! all {
998 ($fut0:expr $(,)?) => { $crate::__all! { fut0: $fut0; } };
999 ($fut0:expr, $fut1:expr $(,)?) => {
1000 $crate::__all! {
1001 fut0: $fut0;
1002 fut1: $fut1;
1003 }
1004 };
1005 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1006 $crate::__all! {
1007 fut0: $fut0;
1008 fut1: $fut1;
1009 fut2: $fut2;
1010 }
1011 };
1012 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1013 $crate::__all! {
1014 fut0: $fut0;
1015 fut1: $fut1;
1016 fut2: $fut2;
1017 fut3: $fut3;
1018 }
1019 };
1020 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1021 $crate::__all! {
1022 fut0: $fut0;
1023 fut1: $fut1;
1024 fut2: $fut2;
1025 fut3: $fut3;
1026 fut4: $fut4;
1027 }
1028 };
1029 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1030 $crate::__all! {
1031 fut0: $fut0;
1032 fut1: $fut1;
1033 fut2: $fut2;
1034 fut3: $fut3;
1035 fut4: $fut4;
1036 fut5: $fut5;
1037 }
1038 };
1039 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1040 $crate::__all! {
1041 fut0: $fut0;
1042 fut1: $fut1;
1043 fut2: $fut2;
1044 fut3: $fut3;
1045 fut4: $fut4;
1046 fut5: $fut5;
1047 fut6: $fut6;
1048 }
1049 };
1050 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1051 $crate::__all! {
1052 fut0: $fut0;
1053 fut1: $fut1;
1054 fut2: $fut2;
1055 fut3: $fut3;
1056 fut4: $fut4;
1057 fut5: $fut5;
1058 fut6: $fut6;
1059 fut7: $fut7;
1060 }
1061 };
1062 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all; $($fut),+ } }
1063}
1064
1065#[doc(hidden)]
1066#[macro_export]
1067macro_rules! __all {
1068 ($($ident:ident: $fut:expr;)+) => {
1069 {
1070 $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1071 $crate::future_fn(move |cx| {
1072 use std::task::Poll;
1073
1074 let mut pending = false;
1075
1076 $(
1077 if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1078 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1079 // Future::poll call, so it will not move.
1080 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1081 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1082 $ident = $crate::FutureOrOutput::Output(r);
1083 } else {
1084 pending = true;
1085 }
1086 }
1087 )+
1088
1089 if pending {
1090 Poll::Pending
1091 } else {
1092 Poll::Ready(($($ident.take_output()),+))
1093 }
1094 })
1095 }
1096 }
1097}
1098
1099#[doc(hidden)]
1100pub enum FutureOrOutput<F: Future> {
1101 Future(F),
1102 Output(F::Output),
1103 Taken,
1104}
1105impl<F: Future> FutureOrOutput<F> {
1106 pub fn take_output(&mut self) -> F::Output {
1107 match std::mem::replace(self, Self::Taken) {
1108 FutureOrOutput::Output(o) => o,
1109 _ => unreachable!(),
1110 }
1111 }
1112}
1113
1114/// A future that awaits on all `futures` at the same time and returns all results when all futures are ready.
1115///
1116/// This is the dynamic version of [`all!`].
1117pub async fn all<F: IntoFuture>(futures: impl IntoIterator<Item = F>) -> Vec<F::Output> {
1118 let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1119 future_fn(move |cx| {
1120 let mut pending = false;
1121 for input in &mut futures {
1122 if let FutureOrOutput::Future(fut) = input {
1123 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1124 // Future::poll call, so it will not move.
1125 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1126 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1127 *input = FutureOrOutput::Output(r);
1128 } else {
1129 pending = true;
1130 }
1131 }
1132 }
1133
1134 if pending {
1135 Poll::Pending
1136 } else {
1137 Poll::Ready(futures.iter_mut().map(FutureOrOutput::take_output).collect())
1138 }
1139 })
1140 .await
1141}
1142
1143/// <span data-del-macro-root></span> A future that awaits for the first future that is ready.
1144///
1145/// The macro input is comma separated list of future expressions, the futures must
1146/// all have the same output type. The macro output is a future that when ".awaited" produces
1147/// a single output type instance returned by the first input future that completes.
1148///
1149/// At least one input future is required and any number of futures is accepted. For more than
1150/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1151/// some IDEs.
1152///
1153/// If two futures are ready at the same time the result of the first future in the input list is used.
1154/// After one future is ready the other futures are not polled again and are dropped.
1155///
1156/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1157/// known at compile time, use the [`fn@any`] async function to await on all futures in a dynamic list of futures.
1158///
1159/// # Examples
1160///
1161/// Await for the first of three futures to complete:
1162///
1163/// ```
1164/// use zng_task as task;
1165/// use zng_unit::*;
1166///
1167/// # task::doc_test(false, async {
1168/// let r = task::any!(
1169/// task::run(async {
1170/// task::deadline(300.ms()).await;
1171/// 'a'
1172/// }),
1173/// task::wait(|| 'b'),
1174/// async {
1175/// task::deadline(300.ms()).await;
1176/// 'c'
1177/// }
1178/// )
1179/// .await;
1180///
1181/// assert_eq!('b', r);
1182/// # });
1183/// ```
1184#[macro_export]
1185macro_rules! any {
1186 ($fut0:expr $(,)?) => { $crate::__any! { fut0: $fut0; } };
1187 ($fut0:expr, $fut1:expr $(,)?) => {
1188 $crate::__any! {
1189 fut0: $fut0;
1190 fut1: $fut1;
1191 }
1192 };
1193 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1194 $crate::__any! {
1195 fut0: $fut0;
1196 fut1: $fut1;
1197 fut2: $fut2;
1198 }
1199 };
1200 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1201 $crate::__any! {
1202 fut0: $fut0;
1203 fut1: $fut1;
1204 fut2: $fut2;
1205 fut3: $fut3;
1206 }
1207 };
1208 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1209 $crate::__any! {
1210 fut0: $fut0;
1211 fut1: $fut1;
1212 fut2: $fut2;
1213 fut3: $fut3;
1214 fut4: $fut4;
1215 }
1216 };
1217 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1218 $crate::__any! {
1219 fut0: $fut0;
1220 fut1: $fut1;
1221 fut2: $fut2;
1222 fut3: $fut3;
1223 fut4: $fut4;
1224 fut5: $fut5;
1225 }
1226 };
1227 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1228 $crate::__any! {
1229 fut0: $fut0;
1230 fut1: $fut1;
1231 fut2: $fut2;
1232 fut3: $fut3;
1233 fut4: $fut4;
1234 fut5: $fut5;
1235 fut6: $fut6;
1236 }
1237 };
1238 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1239 $crate::__any! {
1240 fut0: $fut0;
1241 fut1: $fut1;
1242 fut2: $fut2;
1243 fut3: $fut3;
1244 fut4: $fut4;
1245 fut5: $fut5;
1246 fut6: $fut6;
1247 fut7: $fut7;
1248 }
1249 };
1250 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any; $($fut),+ } }
1251}
1252#[doc(hidden)]
1253#[macro_export]
1254macro_rules! __any {
1255 ($($ident:ident: $fut:expr;)+) => {
1256 {
1257 $(let mut $ident = std::future::IntoFuture::into_future($fut);)+
1258 $crate::future_fn(move |cx| {
1259 use std::task::Poll;
1260 $(
1261 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1262 // Future::poll call, so it will not move.
1263 let mut $ident = unsafe { std::pin::Pin::new_unchecked(&mut $ident) };
1264 if let Poll::Ready(r) = $ident.as_mut().poll(cx) {
1265 return Poll::Ready(r)
1266 }
1267 )+
1268
1269 Poll::Pending
1270 })
1271 }
1272 }
1273}
1274#[doc(hidden)]
1275pub use zng_task_proc_macros::task_any_all as __proc_any_all;
1276
1277/// A future that awaits on all `futures` at the same time and returns the first result when the first future is ready.
1278///
1279/// This is the dynamic version of [`any!`].
1280pub async fn any<F: IntoFuture>(futures: impl IntoIterator<Item = F>) -> F::Output {
1281 let mut futures: Vec<_> = futures.into_iter().map(IntoFuture::into_future).collect();
1282 future_fn(move |cx| {
1283 for fut in &mut futures {
1284 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1285 // Future::poll call, so it will not move.
1286 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1287 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1288 return Poll::Ready(r);
1289 }
1290 }
1291 Poll::Pending
1292 })
1293 .await
1294}
1295
1296/// <span data-del-macro-root></span> A future that waits for the first future that is ready with an `Ok(T)` result.
1297///
1298/// The macro input is comma separated list of future expressions, the futures must
1299/// all have the same output `Result<T, E>` type, but each can have a different `E`. The macro output is a future
1300/// that when ".awaited" produces a single output of type `Result<T, (E0, E1, ..)>` that is `Ok(T)` if any of the futures
1301/// is `Ok(T)` or is `Err((E0, E1, ..))` is all futures are `Err`.
1302///
1303/// At least one input future is required and any number of futures is accepted. For more than
1304/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1305/// some IDEs.
1306///
1307/// If two futures are ready and `Ok(T)` at the same time the result of the first future in the input list is used.
1308/// After one future is ready and `Ok(T)` the other futures are not polled again and are dropped. After a future
1309/// is ready and `Err(E)` it is also not polled again and dropped.
1310///
1311/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1312/// known at compile time, use the [`fn@any_ok`] async function to await on all futures in a dynamic list of futures.
1313///
1314/// # Examples
1315///
1316/// Await for the first of three futures to complete with `Ok`:
1317///
1318/// ```
1319/// use zng_task as task;
1320/// # #[derive(Debug, PartialEq)]
1321/// # pub struct FooError;
1322/// # task::doc_test(false, async {
1323/// let r = task::any_ok!(
1324/// task::run(async { Err::<char, _>("error") }),
1325/// task::wait(|| Ok::<_, FooError>('b')),
1326/// async { Err::<char, _>(FooError) }
1327/// )
1328/// .await;
1329///
1330/// assert_eq!(Ok('b'), r);
1331/// # });
1332/// ```
1333#[macro_export]
1334macro_rules! any_ok {
1335 ($fut0:expr $(,)?) => { $crate::__any_ok! { fut0: $fut0; } };
1336 ($fut0:expr, $fut1:expr $(,)?) => {
1337 $crate::__any_ok! {
1338 fut0: $fut0;
1339 fut1: $fut1;
1340 }
1341 };
1342 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1343 $crate::__any_ok! {
1344 fut0: $fut0;
1345 fut1: $fut1;
1346 fut2: $fut2;
1347 }
1348 };
1349 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1350 $crate::__any_ok! {
1351 fut0: $fut0;
1352 fut1: $fut1;
1353 fut2: $fut2;
1354 fut3: $fut3;
1355 }
1356 };
1357 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1358 $crate::__any_ok! {
1359 fut0: $fut0;
1360 fut1: $fut1;
1361 fut2: $fut2;
1362 fut3: $fut3;
1363 fut4: $fut4;
1364 }
1365 };
1366 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1367 $crate::__any_ok! {
1368 fut0: $fut0;
1369 fut1: $fut1;
1370 fut2: $fut2;
1371 fut3: $fut3;
1372 fut4: $fut4;
1373 fut5: $fut5;
1374 }
1375 };
1376 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1377 $crate::__any_ok! {
1378 fut0: $fut0;
1379 fut1: $fut1;
1380 fut2: $fut2;
1381 fut3: $fut3;
1382 fut4: $fut4;
1383 fut5: $fut5;
1384 fut6: $fut6;
1385 }
1386 };
1387 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1388 $crate::__any_ok! {
1389 fut0: $fut0;
1390 fut1: $fut1;
1391 fut2: $fut2;
1392 fut3: $fut3;
1393 fut4: $fut4;
1394 fut5: $fut5;
1395 fut6: $fut6;
1396 fut7: $fut7;
1397 }
1398 };
1399 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any_ok; $($fut),+ } }
1400}
1401
1402#[doc(hidden)]
1403#[macro_export]
1404macro_rules! __any_ok {
1405 ($($ident:ident: $fut: expr;)+) => {
1406 {
1407 $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1408 $crate::future_fn(move |cx| {
1409 use std::task::Poll;
1410
1411 let mut pending = false;
1412
1413 $(
1414 if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1415 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1416 // Future::poll call, so it will not move.
1417 let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1418 if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1419 match r {
1420 Ok(r) => return Poll::Ready(Ok(r)),
1421 Err(e) => {
1422 $ident = $crate::FutureOrOutput::Output(Err(e));
1423 }
1424 }
1425 } else {
1426 pending = true;
1427 }
1428 }
1429 )+
1430
1431 if pending {
1432 Poll::Pending
1433 } else {
1434 Poll::Ready(Err((
1435 $($ident.take_output().unwrap_err()),+
1436 )))
1437 }
1438 })
1439 }
1440 }
1441}
1442
1443/// A future that awaits on all `futures` at the same time and returns when any future is `Ok(_)` or all are `Err(_)`.
1444///
1445/// This is the dynamic version of [`all_some!`].
1446pub async fn any_ok<Ok, Err, F: IntoFuture<Output = Result<Ok, Err>>>(futures: impl IntoIterator<Item = F>) -> Result<Ok, Vec<Err>> {
1447 let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1448 future_fn(move |cx| {
1449 let mut pending = false;
1450 for input in &mut futures {
1451 if let FutureOrOutput::Future(fut) = input {
1452 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1453 // Future::poll call, so it will not move.
1454 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1455 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1456 match r {
1457 Ok(r) => return Poll::Ready(Ok(r)),
1458 Err(e) => *input = FutureOrOutput::Output(Err(e)),
1459 }
1460 } else {
1461 pending = true;
1462 }
1463 }
1464 }
1465
1466 if pending {
1467 Poll::Pending
1468 } else {
1469 Poll::Ready(Err(futures
1470 .iter_mut()
1471 .map(|f| match f.take_output() {
1472 Ok(_) => unreachable!(),
1473 Err(e) => e,
1474 })
1475 .collect()))
1476 }
1477 })
1478 .await
1479}
1480
1481/// <span data-del-macro-root></span> A future that is ready when any of the futures is ready and `Some(T)`.
1482///
1483/// The macro input is comma separated list of future expressions, the futures must
1484/// all have the same output `Option<T>` type. The macro output is a future that when ".awaited" produces
1485/// a single output type instance returned by the first input future that completes with a `Some`.
1486/// If all futures complete with a `None` the output is `None`.
1487///
1488/// At least one input future is required and any number of futures is accepted. For more than
1489/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1490/// some IDEs.
1491///
1492/// If two futures are ready and `Some(T)` at the same time the result of the first future in the input list is used.
1493/// After one future is ready and `Some(T)` the other futures are not polled again and are dropped. After a future
1494/// is ready and `None` it is also not polled again and dropped.
1495///
1496/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1497/// known at compile time, use the [`fn@any_some`] async function to await on all futures in a dynamic list of futures.
1498///
1499/// # Examples
1500///
1501/// Await for the first of three futures to complete with `Some`:
1502///
1503/// ```
1504/// use zng_task as task;
1505/// # task::doc_test(false, async {
1506/// let r = task::any_some!(task::run(async { None::<char> }), task::wait(|| Some('b')), async { None::<char> }).await;
1507///
1508/// assert_eq!(Some('b'), r);
1509/// # });
1510/// ```
1511#[macro_export]
1512macro_rules! any_some {
1513 ($fut0:expr $(,)?) => { $crate::__any_some! { fut0: $fut0; } };
1514 ($fut0:expr, $fut1:expr $(,)?) => {
1515 $crate::__any_some! {
1516 fut0: $fut0;
1517 fut1: $fut1;
1518 }
1519 };
1520 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1521 $crate::__any_some! {
1522 fut0: $fut0;
1523 fut1: $fut1;
1524 fut2: $fut2;
1525 }
1526 };
1527 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1528 $crate::__any_some! {
1529 fut0: $fut0;
1530 fut1: $fut1;
1531 fut2: $fut2;
1532 fut3: $fut3;
1533 }
1534 };
1535 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1536 $crate::__any_some! {
1537 fut0: $fut0;
1538 fut1: $fut1;
1539 fut2: $fut2;
1540 fut3: $fut3;
1541 fut4: $fut4;
1542 }
1543 };
1544 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1545 $crate::__any_some! {
1546 fut0: $fut0;
1547 fut1: $fut1;
1548 fut2: $fut2;
1549 fut3: $fut3;
1550 fut4: $fut4;
1551 fut5: $fut5;
1552 }
1553 };
1554 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1555 $crate::__any_some! {
1556 fut0: $fut0;
1557 fut1: $fut1;
1558 fut2: $fut2;
1559 fut3: $fut3;
1560 fut4: $fut4;
1561 fut5: $fut5;
1562 fut6: $fut6;
1563 }
1564 };
1565 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1566 $crate::__any_some! {
1567 fut0: $fut0;
1568 fut1: $fut1;
1569 fut2: $fut2;
1570 fut3: $fut3;
1571 fut4: $fut4;
1572 fut5: $fut5;
1573 fut6: $fut6;
1574 fut7: $fut7;
1575 }
1576 };
1577 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any_some; $($fut),+ } }
1578}
1579
1580#[doc(hidden)]
1581#[macro_export]
1582macro_rules! __any_some {
1583 ($($ident:ident: $fut: expr;)+) => {
1584 {
1585 $(let mut $ident = Some(std::future::IntoFuture::into_future($fut));)+
1586 $crate::future_fn(move |cx| {
1587 use std::task::Poll;
1588
1589 let mut pending = false;
1590
1591 $(
1592 if let Some(fut) = $ident.as_mut() {
1593 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1594 // Future::poll call, so it will not move.
1595 let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1596 if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1597 if let Some(r) = r {
1598 return Poll::Ready(Some(r));
1599 }
1600 $ident = None;
1601 } else {
1602 pending = true;
1603 }
1604 }
1605 )+
1606
1607 if pending {
1608 Poll::Pending
1609 } else {
1610 Poll::Ready(None)
1611 }
1612 })
1613 }
1614 }
1615}
1616
1617/// A future that awaits on all `futures` at the same time and returns when any future is `Some(_)` or all are `None`.
1618///
1619/// This is the dynamic version of [`all_some!`].
1620pub async fn any_some<Some, F: IntoFuture<Output = Option<Some>>>(futures: impl IntoIterator<Item = F>) -> Option<Some> {
1621 let mut futures: Vec<_> = futures.into_iter().map(|f| Some(f.into_future())).collect();
1622 future_fn(move |cx| {
1623 let mut pending = false;
1624 for input in &mut futures {
1625 if let Some(fut) = input {
1626 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1627 // Future::poll call, so it will not move.
1628 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1629 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1630 match r {
1631 Some(r) => return Poll::Ready(Some(r)),
1632 None => *input = None,
1633 }
1634 } else {
1635 pending = true;
1636 }
1637 }
1638 }
1639
1640 if pending { Poll::Pending } else { Poll::Ready(None) }
1641 })
1642 .await
1643}
1644
1645/// <span data-del-macro-root></span> A future that is ready when all futures are ready with an `Ok(T)` result or
1646/// any future is ready with an `Err(E)` result.
1647///
1648/// The output type is `Result<(T0, T1, ..), E>`, the `Ok` type is a tuple with all the `Ok` values, the error
1649/// type is the first error encountered, the input futures must have the same `Err` type but can have different
1650/// `Ok` types.
1651///
1652/// At least one input future is required and any number of futures is accepted. For more than
1653/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1654/// some IDEs.
1655///
1656/// If two futures are ready and `Err(E)` at the same time the result of the first future in the input list is used.
1657/// After one future is ready and `Err(T)` the other futures are not polled again and are dropped. After a future
1658/// is ready it is also not polled again and dropped.
1659///
1660/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1661/// known at compile time, use the [`fn@all_ok`] async function to await on all futures in a dynamic list of futures.
1662///
1663/// # Examples
1664///
1665/// Await for the first of three futures to complete with `Ok(T)`:
1666///
1667/// ```
1668/// use zng_task as task;
1669/// # #[derive(Debug, PartialEq)]
1670/// # struct FooError;
1671/// # task::doc_test(false, async {
1672/// let r = task::all_ok!(
1673/// task::run(async { Ok::<_, FooError>('a') }),
1674/// task::wait(|| Ok::<_, FooError>('b')),
1675/// async { Ok::<_, FooError>('c') }
1676/// )
1677/// .await;
1678///
1679/// assert_eq!(Ok(('a', 'b', 'c')), r);
1680/// # });
1681/// ```
1682///
1683/// And in if any completes with `Err(E)`:
1684///
1685/// ```
1686/// use zng_task as task;
1687/// # #[derive(Debug, PartialEq)]
1688/// # struct FooError;
1689/// # task::doc_test(false, async {
1690/// let r = task::all_ok!(task::run(async { Ok('a') }), task::wait(|| Err::<char, _>(FooError)), async {
1691/// Ok('c')
1692/// })
1693/// .await;
1694///
1695/// assert_eq!(Err(FooError), r);
1696/// # });
1697/// ```
1698#[macro_export]
1699macro_rules! all_ok {
1700 ($fut0:expr $(,)?) => { $crate::__all_ok! { fut0: $fut0; } };
1701 ($fut0:expr, $fut1:expr $(,)?) => {
1702 $crate::__all_ok! {
1703 fut0: $fut0;
1704 fut1: $fut1;
1705 }
1706 };
1707 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1708 $crate::__all_ok! {
1709 fut0: $fut0;
1710 fut1: $fut1;
1711 fut2: $fut2;
1712 }
1713 };
1714 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1715 $crate::__all_ok! {
1716 fut0: $fut0;
1717 fut1: $fut1;
1718 fut2: $fut2;
1719 fut3: $fut3;
1720 }
1721 };
1722 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1723 $crate::__all_ok! {
1724 fut0: $fut0;
1725 fut1: $fut1;
1726 fut2: $fut2;
1727 fut3: $fut3;
1728 fut4: $fut4;
1729 }
1730 };
1731 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1732 $crate::__all_ok! {
1733 fut0: $fut0;
1734 fut1: $fut1;
1735 fut2: $fut2;
1736 fut3: $fut3;
1737 fut4: $fut4;
1738 fut5: $fut5;
1739 }
1740 };
1741 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1742 $crate::__all_ok! {
1743 fut0: $fut0;
1744 fut1: $fut1;
1745 fut2: $fut2;
1746 fut3: $fut3;
1747 fut4: $fut4;
1748 fut5: $fut5;
1749 fut6: $fut6;
1750 }
1751 };
1752 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1753 $crate::__all_ok! {
1754 fut0: $fut0;
1755 fut1: $fut1;
1756 fut2: $fut2;
1757 fut3: $fut3;
1758 fut4: $fut4;
1759 fut5: $fut5;
1760 fut6: $fut6;
1761 fut7: $fut7;
1762 }
1763 };
1764 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all_ok; $($fut),+ } }
1765}
1766
1767#[doc(hidden)]
1768#[macro_export]
1769macro_rules! __all_ok {
1770 ($($ident:ident: $fut: expr;)+) => {
1771 {
1772 $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1773 $crate::future_fn(move |cx| {
1774 use std::task::Poll;
1775
1776 let mut pending = false;
1777
1778 $(
1779 if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1780 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1781 // Future::poll call, so it will not move.
1782 let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1783 if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1784 match r {
1785 Ok(r) => {
1786 $ident = $crate::FutureOrOutput::Output(Ok(r))
1787 },
1788 Err(e) => return Poll::Ready(Err(e)),
1789 }
1790 } else {
1791 pending = true;
1792 }
1793 }
1794 )+
1795
1796 if pending {
1797 Poll::Pending
1798 } else {
1799 Poll::Ready(Ok((
1800 $($ident.take_output().unwrap()),+
1801 )))
1802 }
1803 })
1804 }
1805 }
1806}
1807
1808/// A future that awaits on all `futures` at the same time and returns when all futures are `Ok(_)` or any future is `Err(_)`.
1809///
1810/// This is the dynamic version of [`all_ok!`].
1811pub async fn all_ok<Ok, Err, F: IntoFuture<Output = Result<Ok, Err>>>(futures: impl IntoIterator<Item = F>) -> Result<Vec<Ok>, Err> {
1812 let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1813 future_fn(move |cx| {
1814 let mut pending = false;
1815 for input in &mut futures {
1816 if let FutureOrOutput::Future(fut) = input {
1817 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1818 // Future::poll call, so it will not move.
1819 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1820 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1821 match r {
1822 Ok(r) => *input = FutureOrOutput::Output(Ok(r)),
1823 Err(e) => return Poll::Ready(Err(e)),
1824 }
1825 } else {
1826 pending = true;
1827 }
1828 }
1829 }
1830
1831 if pending {
1832 Poll::Pending
1833 } else {
1834 Poll::Ready(Ok(futures
1835 .iter_mut()
1836 .map(|f| f.take_output().unwrap_or_else(|_| unreachable!()))
1837 .collect()))
1838 }
1839 })
1840 .await
1841}
1842
1843/// <span data-del-macro-root></span> A future that is ready when all futures are ready with `Some(T)` or when any
1844/// is future ready with `None`.
1845///
1846/// The macro input is comma separated list of future expressions, the futures must
1847/// all have the `Option<T>` output type, but each can have a different `T`. The macro output is a future that when ".awaited"
1848/// produces `Some<(T0, T1, ..)>` if all futures where `Some(T)` or `None` if any of the futures where `None`.
1849///
1850/// At least one input future is required and any number of futures is accepted. For more than
1851/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1852/// some IDEs.
1853///
1854/// After one future is ready and `None` the other futures are not polled again and are dropped. After a future
1855/// is ready it is also not polled again and dropped.
1856///
1857/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1858/// known at compile time, use the [`fn@all_some`] async function to await on all futures in a dynamic list of futures.
1859///
1860/// # Examples
1861///
1862/// Await for the first of three futures to complete with `Some`:
1863///
1864/// ```
1865/// use zng_task as task;
1866/// # task::doc_test(false, async {
1867/// let r = task::all_some!(task::run(async { Some('a') }), task::wait(|| Some('b')), async { Some('c') }).await;
1868///
1869/// assert_eq!(Some(('a', 'b', 'c')), r);
1870/// # });
1871/// ```
1872///
1873/// Completes with `None` if any future completes with `None`:
1874///
1875/// ```
1876/// # use zng_task as task;
1877/// # task::doc_test(false, async {
1878/// let r = task::all_some!(task::run(async { Some('a') }), task::wait(|| None::<char>), async { Some('b') }).await;
1879///
1880/// assert_eq!(None, r);
1881/// # });
1882/// ```
1883#[macro_export]
1884macro_rules! all_some {
1885 ($fut0:expr $(,)?) => { $crate::__all_some! { fut0: $fut0; } };
1886 ($fut0:expr, $fut1:expr $(,)?) => {
1887 $crate::__all_some! {
1888 fut0: $fut0;
1889 fut1: $fut1;
1890 }
1891 };
1892 ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1893 $crate::__all_some! {
1894 fut0: $fut0;
1895 fut1: $fut1;
1896 fut2: $fut2;
1897 }
1898 };
1899 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1900 $crate::__all_some! {
1901 fut0: $fut0;
1902 fut1: $fut1;
1903 fut2: $fut2;
1904 fut3: $fut3;
1905 }
1906 };
1907 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1908 $crate::__all_some! {
1909 fut0: $fut0;
1910 fut1: $fut1;
1911 fut2: $fut2;
1912 fut3: $fut3;
1913 fut4: $fut4;
1914 }
1915 };
1916 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1917 $crate::__all_some! {
1918 fut0: $fut0;
1919 fut1: $fut1;
1920 fut2: $fut2;
1921 fut3: $fut3;
1922 fut4: $fut4;
1923 fut5: $fut5;
1924 }
1925 };
1926 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1927 $crate::__all_some! {
1928 fut0: $fut0;
1929 fut1: $fut1;
1930 fut2: $fut2;
1931 fut3: $fut3;
1932 fut4: $fut4;
1933 fut5: $fut5;
1934 fut6: $fut6;
1935 }
1936 };
1937 ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1938 $crate::__all_some! {
1939 fut0: $fut0;
1940 fut1: $fut1;
1941 fut2: $fut2;
1942 fut3: $fut3;
1943 fut4: $fut4;
1944 fut5: $fut5;
1945 fut6: $fut6;
1946 fut7: $fut7;
1947 }
1948 };
1949 ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all_some; $($fut),+ } }
1950}
1951
1952#[doc(hidden)]
1953#[macro_export]
1954macro_rules! __all_some {
1955 ($($ident:ident: $fut: expr;)+) => {
1956 {
1957 $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1958 $crate::future_fn(move |cx| {
1959 use std::task::Poll;
1960
1961 let mut pending = false;
1962
1963 $(
1964 if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1965 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1966 // Future::poll call, so it will not move.
1967 let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1968 if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1969 if r.is_none() {
1970 return Poll::Ready(None);
1971 }
1972
1973 $ident = $crate::FutureOrOutput::Output(r);
1974 } else {
1975 pending = true;
1976 }
1977 }
1978 )+
1979
1980 if pending {
1981 Poll::Pending
1982 } else {
1983 Poll::Ready(Some((
1984 $($ident.take_output().unwrap()),+
1985 )))
1986 }
1987 })
1988 }
1989 }
1990}
1991
1992/// A future that awaits on all `futures` at the same time and returns when all futures are `Some(_)` or any future is `None`.
1993///
1994/// This is the dynamic version of [`all_some!`].
1995pub async fn all_some<Some, F: IntoFuture<Output = Option<Some>>>(futures: impl IntoIterator<Item = F>) -> Option<Vec<Some>> {
1996 let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1997 future_fn(move |cx| {
1998 let mut pending = false;
1999 for input in &mut futures {
2000 if let FutureOrOutput::Future(fut) = input {
2001 // SAFETY: the closure owns $ident and is an exclusive borrow inside a
2002 // Future::poll call, so it will not move.
2003 let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
2004 if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
2005 match r {
2006 Some(r) => *input = FutureOrOutput::Output(Some(r)),
2007 None => return Poll::Ready(None),
2008 }
2009 } else {
2010 pending = true;
2011 }
2012 }
2013 }
2014
2015 if pending {
2016 Poll::Pending
2017 } else {
2018 Poll::Ready(Some(futures.iter_mut().map(|f| f.take_output().unwrap()).collect()))
2019 }
2020 })
2021 .await
2022}
2023
2024/// A future that will await until [`set`] is called.
2025///
2026/// # Examples
2027///
2028/// Spawns a parallel task that only writes to stdout after the main thread sets the signal:
2029///
2030/// ```
2031/// use zng_clone_move::async_clmv;
2032/// use zng_task::{self as task, *};
2033///
2034/// let signal = SignalOnce::default();
2035///
2036/// task::spawn(async_clmv!(signal, {
2037/// signal.await;
2038/// println!("After Signal!");
2039/// }));
2040///
2041/// signal.set();
2042/// ```
2043///
2044/// [`set`]: SignalOnce::set
2045#[derive(Default, Clone)]
2046pub struct SignalOnce(Arc<SignalInner>);
2047impl fmt::Debug for SignalOnce {
2048 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2049 write!(f, "SignalOnce({})", self.is_set())
2050 }
2051}
2052impl PartialEq for SignalOnce {
2053 fn eq(&self, other: &Self) -> bool {
2054 Arc::ptr_eq(&self.0, &other.0)
2055 }
2056}
2057impl Eq for SignalOnce {}
2058impl Hash for SignalOnce {
2059 fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2060 Arc::as_ptr(&self.0).hash(state)
2061 }
2062}
2063impl SignalOnce {
2064 /// New unsigned.
2065 pub fn new() -> Self {
2066 Self::default()
2067 }
2068
2069 /// New signaled.
2070 pub fn new_set() -> Self {
2071 let s = Self::new();
2072 s.set();
2073 s
2074 }
2075
2076 /// If the signal was set.
2077 pub fn is_set(&self) -> bool {
2078 self.0.signaled.load(Ordering::Relaxed)
2079 }
2080
2081 /// Sets the signal and awakes listeners.
2082 pub fn set(&self) {
2083 if !self.0.signaled.swap(true, Ordering::Relaxed) {
2084 let listeners = mem::take(&mut *self.0.listeners.lock());
2085 for listener in listeners {
2086 listener.wake();
2087 }
2088 }
2089 }
2090}
2091impl Future for SignalOnce {
2092 type Output = ();
2093
2094 fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<()> {
2095 if self.0.signaled.load(Ordering::Relaxed) {
2096 return Poll::Ready(());
2097 }
2098
2099 let mut listeners = self.0.listeners.lock();
2100 if self.0.signaled.load(Ordering::Relaxed) {
2101 return Poll::Ready(());
2102 }
2103
2104 let waker = cx.waker();
2105 if !listeners.iter().any(|w| w.will_wake(waker)) {
2106 listeners.push(waker.clone());
2107 }
2108
2109 Poll::Pending
2110 }
2111}
2112
2113#[derive(Default)]
2114struct SignalInner {
2115 signaled: AtomicBool,
2116 listeners: Mutex<Vec<std::task::Waker>>,
2117}
2118
2119/// A [`Waker`] that dispatches a wake call to multiple other wakers.
2120///
2121/// This is useful for sharing one wake source with multiple [`Waker`] clients that may not be all
2122/// known at the moment the first request is made.
2123///
2124/// [`Waker`]: std::task::Waker
2125#[derive(Clone)]
2126pub struct McWaker(Arc<WakeVec>);
2127
2128#[derive(Default)]
2129struct WakeVec(Mutex<Vec<std::task::Waker>>);
2130impl WakeVec {
2131 fn push(&self, waker: std::task::Waker) -> bool {
2132 let mut v = self.0.lock();
2133
2134 let return_waker = v.is_empty();
2135
2136 v.push(waker);
2137
2138 return_waker
2139 }
2140
2141 fn cancel(&self) {
2142 let mut v = self.0.lock();
2143
2144 debug_assert!(!v.is_empty(), "called cancel on an empty McWaker");
2145
2146 v.clear();
2147 }
2148}
2149impl std::task::Wake for WakeVec {
2150 fn wake(self: Arc<Self>) {
2151 for w in mem::take(&mut *self.0.lock()) {
2152 w.wake();
2153 }
2154 }
2155}
2156impl McWaker {
2157 /// New empty waker.
2158 pub fn empty() -> Self {
2159 Self(Arc::new(WakeVec::default()))
2160 }
2161
2162 /// Register a `waker` to wake once when `self` awakes.
2163 ///
2164 /// Returns `Some(self as waker)` if `self` was previously empty, if `None` is returned [`Poll::Pending`] must
2165 /// be returned, if a waker is returned the shared resource must be polled using the waker, if the shared resource
2166 /// is ready [`cancel`] must be called.
2167 ///
2168 /// [`cancel`]: Self::cancel
2169 pub fn push(&self, waker: std::task::Waker) -> Option<std::task::Waker> {
2170 if self.0.push(waker) { Some(self.0.clone().into()) } else { None }
2171 }
2172
2173 /// Clear current registered wakers.
2174 pub fn cancel(&self) {
2175 self.0.cancel()
2176 }
2177}
2178
2179/// Panic payload, captured by [`std::panic::catch_unwind`].
2180#[non_exhaustive]
2181pub struct TaskPanicError {
2182 /// Panic payload.
2183 pub payload: Box<dyn Any + Send + 'static>,
2184}
2185impl TaskPanicError {
2186 /// New from panic payload.
2187 pub fn new(payload: Box<dyn Any + Send + 'static>) -> Self {
2188 Self { payload }
2189 }
2190
2191 /// Get the panic string if the `payload` is string like.
2192 pub fn panic_str(&self) -> Option<&str> {
2193 if let Some(s) = self.payload.downcast_ref::<&str>() {
2194 Some(s)
2195 } else if let Some(s) = self.payload.downcast_ref::<String>() {
2196 Some(s)
2197 } else {
2198 None
2199 }
2200 }
2201}
2202impl fmt::Debug for TaskPanicError {
2203 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2204 f.debug_struct("TaskPanicError").field("panic_str()", &self.panic_str()).finish()
2205 }
2206}
2207impl fmt::Display for TaskPanicError {
2208 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2209 if let Some(s) = self.panic_str() { f.write_str(s) } else { Ok(()) }
2210 }
2211}
2212impl std::error::Error for TaskPanicError {}
2213
2214type SpawnPanicHandler = Box<dyn FnMut(TaskPanicError) + Send + 'static>;
2215
2216app_local! {
2217 // Mutex for Sync only
2218 static SPAWN_PANIC_HANDLERS: Option<Mutex<SpawnPanicHandler>> = None;
2219}
2220
2221/// Set a `handler` that is called when spawn tasks panic.
2222///
2223/// On panic the tasks [`spawn`], [`poll_spawn`] and [`spawn_wait`] log an error, notifies the `handler` and otherwise ignores the panic.
2224///
2225/// The handler is set for the process lifetime, only handler can be set per app. The handler is called inside the same [`LocalContext`]
2226/// and thread the task that panicked was called in.
2227///
2228/// ```
2229/// # macro_rules! example { () => {
2230/// task::set_spawn_panic_handler(|p| {
2231/// UPDATES
2232/// .run_hn_once(hn_once!(|_| {
2233/// std::panic::resume_unwind(p.payload);
2234/// }))
2235/// .perm();
2236/// });
2237/// # }}
2238/// ```
2239///
2240/// The example above shows how to set a handler that propagates the panic to the app main thread.
2241///
2242/// # Panics
2243///
2244/// Panics if another handler is already set in the same app.
2245///
2246/// Panics if no app is running in the caller thread.
2247pub fn set_spawn_panic_handler(handler: impl FnMut(TaskPanicError) + Send + 'static) {
2248 let mut h = SPAWN_PANIC_HANDLERS.try_write().expect("a spawn panic handler is already set");
2249 assert!(h.is_none(), "a spawn panic handler is already set");
2250 *h = Some(Mutex::new(Box::new(handler)));
2251}
2252
2253fn on_spawn_panic(p: TaskPanicError) {
2254 if let Some(f) = &mut *SPAWN_PANIC_HANDLERS.write() {
2255 f.get_mut()(p)
2256 }
2257}