pub struct IdSet<K>(/* private fields */);
Expand description
Set specialized for unique IDs that are already a randomized hash.
Implementations§
Methods from Deref<Target = HashSet<K, BuildIdHasher>>§
pub fn par_union<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> ParUnion<'a, T, S, A>
pub fn par_union<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> ParUnion<'a, T, S, A>
Visits (potentially in parallel) the values representing the union,
i.e. all the values in self
or other
, without duplicates.
pub fn par_difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> ParDifference<'a, T, S, A>
pub fn par_difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> ParDifference<'a, T, S, A>
Visits (potentially in parallel) the values representing the difference,
i.e. the values that are in self
but not in other
.
pub fn par_symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> ParSymmetricDifference<'a, T, S, A>
pub fn par_symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> ParSymmetricDifference<'a, T, S, A>
Visits (potentially in parallel) the values representing the symmetric
difference, i.e. the values that are in self
or in other
but not in both.
pub fn par_intersection<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> ParIntersection<'a, T, S, A>
pub fn par_intersection<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> ParIntersection<'a, T, S, A>
Visits (potentially in parallel) the values representing the
intersection, i.e. the values that are both in self
and other
.
pub fn par_is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
pub fn par_is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
This method runs in a potentially parallel fashion.
pub fn par_is_subset(&self, other: &HashSet<T, S, A>) -> bool
pub fn par_is_subset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a subset of another,
i.e. other
contains at least all the values in self
.
This method runs in a potentially parallel fashion.
pub fn par_is_superset(&self, other: &HashSet<T, S, A>) -> bool
pub fn par_is_superset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a superset of another,
i.e. self
contains at least all the values in other
.
This method runs in a potentially parallel fashion.
pub fn par_eq(&self, other: &HashSet<T, S, A>) -> bool
pub fn par_eq(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is equal to another,
i.e. both sets contain the same values.
This method runs in a potentially parallel fashion.
pub fn par_drain(&mut self) -> ParDrain<'_, T, A>
pub fn par_drain(&mut self) -> ParDrain<'_, T, A>
Consumes (potentially in parallel) all values in an arbitrary order, while preserving the set’s allocated memory for reuse.
pub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
§Examples
use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);
pub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
An iterator visiting all elements in arbitrary order.
The iterator element type is &'a T
.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");
// Will print in an arbitrary order.
for x in set.iter() {
println!("{}", x);
}
pub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);
pub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the set contains no elements.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());
pub fn drain(&mut self) -> Drain<'_, T, A>
pub fn drain(&mut self) -> Drain<'_, T, A>
Clears the set, returning all elements in an iterator.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert!(!set.is_empty());
// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
println!("{}", i);
}
assert!(set.is_empty());
pub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
§Examples
use hashbrown::HashSet;
let xs = [1,2,3,4,5,6];
let mut set: HashSet<i32> = xs.into_iter().collect();
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A>
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A>
Drains elements which are true under the given predicate, and returns an iterator over the removed items.
In other words, move all elements e
such that f(&e)
returns true
out
into another iterator.
If the returned ExtractIf
is not exhausted, e.g. because it is dropped without iterating
or the iteration short-circuits, then the remaining elements will be retained.
Use retain()
with a negated predicate if you do not need the returned iterator.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = (0..8).collect();
let drained: HashSet<i32> = set.extract_if(|v| v % 2 == 0).collect();
let mut evens = drained.into_iter().collect::<Vec<_>>();
let mut odds = set.into_iter().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
pub fn clear(&mut self)
pub fn clear(&mut self)
Clears the set, removing all values.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());
pub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the set’s BuildHasher
.
§Examples
use hashbrown::HashSet;
use hashbrown::DefaultHashBuilder;
let hasher = DefaultHashBuilder::default();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &DefaultHashBuilder = set.hasher();
pub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted
in the HashSet
. The collection may reserve more space to avoid
frequent reallocations.
§Panics
Panics if the new capacity exceeds isize::MAX
bytes and abort
the program
in case of allocation error. Use try_reserve
instead
if you want to handle memory allocation failure.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional
more elements to be inserted
in the given HashSet<K,V>
. The collection may reserve more space to avoid
frequent reallocations.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
pub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);
pub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Panics if the current capacity is smaller than the supplied minimum capacity.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);
pub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> Difference<'a, T, S, A>
pub fn difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Difference<'a, T, S, A>
Visits the values representing the difference,
i.e., the values that are in self
but not in other
.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{}", x); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());
pub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> SymmetricDifference<'a, T, S, A>
pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> SymmetricDifference<'a, T, S, A>
Visits the values representing the symmetric difference,
i.e., the values that are in self
or in other
but not in both.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{}", x);
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());
pub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S, A>,
) -> Intersection<'a, T, S, A>
pub fn intersection<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Intersection<'a, T, S, A>
Visits the values representing the intersection,
i.e., the values that are both in self
and other
.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{}", x);
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());
pub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A>
pub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A>
Visits the values representing the union,
i.e., all the values in self
or other
, without duplicates.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{}", x);
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());
pub fn contains<Q>(&self, value: &Q) -> bool
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true
if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
pub fn get<Q>(&self, value: &Q) -> Option<&T>
pub fn get<Q>(&self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);
pub fn get_or_insert(&mut self, value: T) -> &T
pub fn get_or_insert(&mut self, value: T) -> &T
Inserts the given value
into the set if it is not present, then
returns a reference to the value in the set.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was inserted
pub fn get_or_insert_with<Q, F>(&mut self, value: &Q, f: F) -> &T
pub fn get_or_insert_with<Q, F>(&mut self, value: &Q, f: F) -> &T
Inserts a value computed from f
into the set if the given value
is
not present, then returns a reference to the value in the set.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
.iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
let value = set.get_or_insert_with(pet, str::to_owned);
assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted
The following example will panic because the new value doesn’t match.
let mut set = hashbrown::HashSet::new();
set.get_or_insert_with("rust", |_| String::new());
pub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
pub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
Gets the given value’s corresponding entry in the set for in-place manipulation.
§Examples
use hashbrown::HashSet;
use hashbrown::hash_set::Entry::*;
let mut singles = HashSet::new();
let mut dupes = HashSet::new();
for ch in "a short treatise on fungi".chars() {
if let Vacant(dupe_entry) = dupes.entry(ch) {
// We haven't already seen a duplicate, so
// check if we've at least seen it once.
match singles.entry(ch) {
Vacant(single_entry) => {
// We found a new character for the first time.
single_entry.insert();
}
Occupied(single_entry) => {
// We've already seen this once, "move" it to dupes.
single_entry.remove();
dupe_entry.insert();
}
}
}
}
assert!(!singles.contains(&'t') && dupes.contains(&'t'));
assert!(singles.contains(&'u') && !dupes.contains(&'u'));
assert!(!singles.contains(&'v') && !dupes.contains(&'v'));
pub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
pub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a subset of another,
i.e., other
contains at least all the values in self
.
§Examples
use hashbrown::HashSet;
let sup: HashSet<_> = [1, 2, 3].into_iter().collect();
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
pub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
pub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
Returns true
if the set is a superset of another,
i.e., self
contains at least all the values in other
.
§Examples
use hashbrown::HashSet;
let sub: HashSet<_> = [1, 2].into_iter().collect();
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);
pub fn insert(&mut self, value: T) -> bool
pub fn insert(&mut self, value: T) -> bool
Adds a value to the set.
If the set did not have this value present, true
is returned.
If the set did have this value present, false
is returned.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
pub unsafe fn insert_unique_unchecked(&mut self, value: T) -> &T
pub unsafe fn insert_unique_unchecked(&mut self, value: T) -> &T
Insert a value the set without checking if the value already exists in the set.
This operation is faster than regular insert, because it does not perform lookup before insertion.
This operation is useful during initial population of the set. For example, when constructing a set from another set, we know that values are unique.
§Safety
This operation is safe if a value does not exist in the set.
However, if a value exists in the set already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the set may panic, loop forever or return arbitrary result.
That said, this operation (and following operations) are guaranteed to not violate memory safety.
However this operation is still unsafe because the resulting HashSet
may be passed to unsafe code which does expect the set to behave
correctly, and would cause unsoundness as a result.
pub fn replace(&mut self, value: T) -> Option<T>
pub fn replace(&mut self, value: T) -> Option<T>
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);
pub fn remove<Q>(&mut self, value: &Q) -> bool
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);
pub fn allocation_size(&self) -> usize
pub fn allocation_size(&self) -> usize
Returns the total amount of memory allocated internally by the hash set, in bytes.
The returned number is informational only. It is intended to be primarily used for memory profiling.
Trait Implementations§
source§impl<K: Eq + Hash> FromIterator<K> for IdSet<K>
impl<K: Eq + Hash> FromIterator<K> for IdSet<K>
source§fn from_iter<T: IntoIterator<Item = K>>(iter: T) -> Self
fn from_iter<T: IntoIterator<Item = K>>(iter: T) -> Self
source§impl<K: Eq + Hash + Send> FromParallelIterator<K> for IdSet<K>
impl<K: Eq + Hash + Send> FromParallelIterator<K> for IdSet<K>
source§fn from_par_iter<I>(par_iter: I) -> Selfwhere
I: IntoParallelIterator<Item = K>,
fn from_par_iter<I>(par_iter: I) -> Selfwhere
I: IntoParallelIterator<Item = K>,
par_iter
. Read moresource§impl<'a, K> IntoIterator for &'a IdSet<K>
impl<'a, K> IntoIterator for &'a IdSet<K>
source§impl<K> IntoIterator for IdSet<K>
impl<K> IntoIterator for IdSet<K>
impl<K: Eq + Hash> Eq for IdSet<K>
Auto Trait Implementations§
impl<K> Freeze for IdSet<K>
impl<K> RefUnwindSafe for IdSet<K>where
K: RefUnwindSafe,
impl<K> Send for IdSet<K>where
K: Send,
impl<K> Sync for IdSet<K>where
K: Sync,
impl<K> Unpin for IdSet<K>where
K: Unpin,
impl<K> UnwindSafe for IdSet<K>where
K: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more