Type Alias Vector3D
pub type Vector3D<T> = Vector3D<T, UnknownUnit>;
Aliased Type§
struct Vector3D<T> {
pub x: T,
pub y: T,
pub z: T,
}
Fields§
§x: T
The x
(traditionally, horizontal) coordinate.
y: T
The y
(traditionally, vertical) coordinate.
z: T
The z
(traditionally, depth) coordinate.
Implementations
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
pub fn splat(v: T) -> Vector3D<T, U>where
T: Clone,
Constructor setting all components to the same value.
pub fn from_lengths(
x: Length<T, U>,
y: Length<T, U>,
z: Length<T, U>,
) -> Vector3D<T, U>
pub fn from_lengths( x: Length<T, U>, y: Length<T, U>, z: Length<T, U>, ) -> Vector3D<T, U>
Constructor taking properly Lengths instead of scalar values.
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Vector3D<T, U>
Tag a unitless value with units.
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
pub fn map<V, F>(self, f: F) -> Vector3D<V, U>where
F: FnMut(T) -> V,
Apply the function f
to each component of this vector.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let p = Vector3D::<u32>::new(5, 11, 15);
assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5));
pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
pub fn zip<V, F>(self, rhs: Vector3D<T, U>, f: F) -> Vector3D<V, U>where
F: FnMut(T, T) -> V,
Apply the function f
to each pair of components of this point and rhs
.
§Example
This may be used to perform unusual arithmetic which is not already offered as methods.
use euclid::default::Vector3D;
let a: Vector3D<u8> = Vector3D::new(50, 200, 10);
let b: Vector3D<u8> = Vector3D::new(100, 100, 0);
assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10));
pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
pub fn abs(self) -> Vector3D<T, U>where
T: Signed,
Computes the vector with absolute values of each component.
§Example
enum U {}
assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2));
let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs();
assert!(vec.x.is_nan());
assert_eq!(vec.y, 0.0);
assert_eq!(vec.z, f32::MAX);
§Panics
The behavior for each component follows the scalar type’s implementation of
num_traits::Signed::abs
.
§impl<T, U> Vector3D<T, U>where
T: PartialEq,
impl<T, U> Vector3D<T, U>where
T: PartialEq,
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “equal” operation on each component.
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn not_equal(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “not equal” operation on each component.
§impl<T, U> Vector3D<T, U>where
T: PartialOrd,
impl<T, U> Vector3D<T, U>where
T: PartialOrd,
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn min(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are minimum of this vector and another.
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
pub fn max(self, other: Vector3D<T, U>) -> Vector3D<T, U>
Returns the vector each component of which are maximum of this vector and another.
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
pub fn clamp(self, start: Vector3D<T, U>, end: Vector3D<T, U>) -> Vector3D<T, U>where
T: Copy,
Returns the vector each component of which is clamped by corresponding
components of start
and end
.
Shortcut for self.max(start).min(end)
.
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn greater_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “greater than” operation on each component.
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
pub fn lower_than(self, other: Vector3D<T, U>) -> BoolVector3D
Returns vector with results of “lower than” operation on each component.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn square_length(self) -> T
pub fn square_length(self) -> T
Returns the vector’s length squared.
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
pub fn project_onto_vector(self, onto: Vector3D<T, U>) -> Vector3D<T, U>
Returns this vector projected onto another one.
Projecting onto a nil vector will cause a division by zero.
§impl<T, U> Vector3D<T, U>where
T: Copy,
impl<T, U> Vector3D<T, U>where
T: Copy,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
pub fn component_mul(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Mul<Output = T>,
Returns the component-wise multiplication of the two vectors.
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
pub fn component_div(self, other: Vector3D<T, U>) -> Vector3D<T, U>where
T: Div<Output = T>,
Returns the component-wise division of the two vectors.
pub fn to_point(self) -> Point3D<T, U>
pub fn to_point(self) -> Point3D<T, U>
Cast this vector into a point.
Equivalent to adding this vector to the origin.
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
pub fn to_array_4d(self) -> [T; 4]where
T: Zero,
Cast into an array with x, y, z and 0.
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: Zero,
Cast into a tuple with x, y, z and 0.
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
pub fn to_untyped(self) -> Vector3D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
pub fn round(self) -> Vector3D<T, U>where
T: Round,
pub fn round(self) -> Vector3D<T, U>where
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0))
pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
pub fn ceil(self) -> Vector3D<T, U>where
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0))
pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
pub fn floor(self) -> Vector3D<T, U>where
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0))
pub fn to_transform(self) -> Transform3D<T, U, U>
pub fn to_transform(self) -> Transform3D<T, U, U>
Creates translation by this vector in vector units
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
pub fn cast<NewT>(self) -> Vector3D<NewT, U>where
NewT: NumCast,
Cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
pub fn try_cast<NewT>(self) -> Option<Vector3D<NewT, U>>where
NewT: NumCast,
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating vector to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
pub fn to_usize(self) -> Vector3D<usize, U>
pub fn to_usize(self) -> Vector3D<usize, U>
Cast into an usize
vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(self) -> Vector3D<u32, U>
pub fn to_u32(self) -> Vector3D<u32, U>
Cast into an u32
vector, truncating decimals if any.
When casting from floating vector vectors, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
§impl<T, U> Vector3D<T, U>where
T: Float,
impl<T, U> Vector3D<T, U>where
T: Float,
pub fn robust_normalize(self) -> Vector3D<T, U>
pub fn robust_normalize(self) -> Vector3D<T, U>
Return the normalized vector even if the length is larger than the max value of Float.
§impl<T, U> Vector3D<T, U>where
T: Real,
impl<T, U> Vector3D<T, U>where
T: Real,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
pub fn angle_to(self, other: Vector3D<T, U>) -> Angle<T>where
T: Trig,
Returns the positive angle between this vector and another vector.
The returned angle is between 0 and PI.
pub fn length(self) -> T
pub fn length(self) -> T
Returns the vector length.
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
pub fn try_normalize(self) -> Option<Vector3D<T, U>>
Returns the vector with length of one unit.
Unlike Vector2D::normalize
, this returns None
in the case that the
length of the vector is zero.
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
pub fn with_max_length(self, max_length: T) -> Vector3D<T, U>
Return this vector capped to a maximum length.
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
pub fn with_min_length(self, min_length: T) -> Vector3D<T, U>
Return this vector with a minimum length applied.
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
pub fn clamp_length(self, min: T, max: T) -> Vector3D<T, U>
Return this vector with minimum and maximum lengths applied.
§impl<T, U> Vector3D<T, U>
impl<T, U> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
pub fn lerp(self, other: Vector3D<T, U>, t: T) -> Vector3D<T, U>
Linearly interpolate each component between this vector and another vector.
§Example
use euclid::vec3;
use euclid::default::Vector3D;
let from: Vector3D<_> = vec3(0.0, 10.0, -1.0);
let to: Vector3D<_> = vec3(8.0, -4.0, 0.0);
assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0));
assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0));
assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5));
assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0));
assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0));
Trait Implementations
§impl<T, U> AddAssign for Vector3D<T, U>
impl<T, U> AddAssign for Vector3D<T, U>
§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+=
operation. Read more§impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
impl<T, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U>where
T: ApproxEq<T>,
§fn approx_epsilon() -> Vector3D<T, U>
fn approx_epsilon() -> Vector3D<T, U>
§fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
fn approx_eq_eps(&self, other: &Vector3D<T, U>, eps: &Vector3D<T, U>) -> bool
true
if this object is approximately equal to the other one, using
a provided epsilon value.§fn approx_eq(&self, other: &Self) -> bool
fn approx_eq(&self, other: &Self) -> bool
true
if this object is approximately equal to the other one, using
the approx_epsilon
epsilon value.§impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
impl<T, U> Ceil for Vector3D<T, U>where
T: Ceil,
§fn ceil(self) -> Vector3D<T, U>
fn ceil(self) -> Vector3D<T, U>
See Vector3D::ceil
.
§impl<'de, T, U> Deserialize<'de> for Vector3D<T, U>where
T: Deserialize<'de>,
impl<'de, T, U> Deserialize<'de> for Vector3D<T, U>where
T: Deserialize<'de>,
§fn deserialize<D>(
deserializer: D,
) -> Result<Vector3D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Vector3D<T, U>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/=
operation. Read more§impl<T, U> DivAssign<T> for Vector3D<T, U>
impl<T, U> DivAssign<T> for Vector3D<T, U>
§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/=
operation. Read more§impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
impl<T, U> Floor for Vector3D<T, U>where
T: Floor,
§fn floor(self) -> Vector3D<T, U>
fn floor(self) -> Vector3D<T, U>
See Vector3D::floor
.
§impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
impl<T, Src, Dst> From<Translation3D<T, Src, Dst>> for Vector3D<T, Src>
§fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
fn from(t: Translation3D<T, Src, Dst>) -> Vector3D<T, Src>
§impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
impl<T, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*=
operation. Read more§impl<T, U> MulAssign<T> for Vector3D<T, U>
impl<T, U> MulAssign<T> for Vector3D<T, U>
§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*=
operation. Read more§impl<T, U> Round for Vector3D<T, U>where
T: Round,
impl<T, U> Round for Vector3D<T, U>where
T: Round,
§fn round(self) -> Vector3D<T, U>
fn round(self) -> Vector3D<T, U>
See Vector3D::round
.
§impl<T, U> Serialize for Vector3D<T, U>where
T: Serialize,
impl<T, U> Serialize for Vector3D<T, U>where
T: Serialize,
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl<T, U> SubAssign for Vector3D<T, U>
impl<T, U> SubAssign for Vector3D<T, U>
§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-=
operation. Read more